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Abstract

Transformer and its variants achieve excellent results in var-
ious computer vision and natural language processing tasks,
but high computational costs and reliance on large training
datasets restrict their deployment in resource-constrained set-
tings. Low-rank approximation of model weights has been
effective in compressing CNN models, but its application
to transformers has been less explored and is less effec-
tive. Existing methods require the complete dataset to fine-
tune compressed models, which are both time-consuming and
data-hungry. This paper reveals that the features (i.e., activa-
tions) are low-rank, but model weights are surprisingly not
low-rank. Hence, AAFM is proposed, which adaptively de-
termines the compressed model structure and locally com-
presses each linear layer’s output features rather than the
model weights. A second stage, GFM, optimizes the entire
compressed network holistically. Both AAFM and GFM only
use few training samples without labels, that is, they are few-
shot, unsupervised, fast and effective. For example, with only
2K images without labels, 33% of the parameters are removed
in DeiT-B with 18.8% relative throughput increase, but only a
0.23% accuracy loss for ImageNet recognition. The proposed
methods are successfully applied to the language modeling
task in NLP, too. Besides, the few-shot compressed models
generalize well in downstream tasks.

Introduction
The transformer architecture (Vaswani et al. 2017) has been
widely used in the natural language processing (NLP) area
over the past years. Inspired by its excellent performance
in NLP, transformer-based models have established numer-
ous new records in various computer vision (CV) tasks, such
as image classification (Dosovitskiy et al. 2021) and ob-
ject detection (Liu et al. 2021). Despite these progresses,
most of these transformer-based structures suffer from large
model sizes, huge run-time memory consumption and high
computational costs, which prohibit the model deployment
to resource-constrained platforms. Therefore, compressing
transformer-based models has attracted immense interests in
recent years.

Low-rank approximation is a useful technique to strike a
balance between model accuracy and model size. Some pre-
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vious NLP research efforts (Noach and Goldberg 2020; Hsu
et al. 2022) focus on exploring the factorization of model
weights. These compression methods have been very suc-
cessful in reducing model size and to speedup inference.
But, the accuracy drops dramatically, hence fine-tuning for
many epochs using the entire training set is needed to partly
recover from the accuracy loss. Nevertheless, to protect data
privacy and/or achieve rapid deployment, in many scenarios
there may be only the original model and a small number
of samples available under a tight compression time bud-
get. Fine-tuning a deep learning model with limited data
will easily lead to overfitting, which invalidates these exist-
ing methods. Furthermore, these methods simply compress
the large transformer model itself, lacking the exploration of
how the compressed models perform on downstream tasks.
Lastly, automatically determining the compression ratio of
each layer is one of the main difficulties in low-rank decom-
position, but efforts in this aspect remain scarce.

Hence, we believe that in order to successfully perform
low-rank approximation on transformers, we need an effec-
tive approach which can be easily applied in both NLP and
CV, which only requires few samples and short compression
time, adaptively determines the compression model struc-
ture and generalizes well to downstream tasks.

To fulfill these goals, our key finding is that although in
linear layers of transformers the weight matrices are almost
full rank (i.e., not suitable for decomposition), the features
(i.e., activations) are generally low-rank. Therefore, we pro-
pose a novel Atomic Feature Mimicking (AFM) approach to
replace traditional weight approximation methods locally.
Besides, since different layers have different compression
sensitivity, we design an adaptive search method to deter-
mine the compressed model architecture, namely Adaptive
AFM (AAFM), for low-rank decomposition. The approxi-
mation will accumulate errors along with the depth incre-
ment, so we propose Global Feature Mimicking (GFM) to
fine-tune the compressed models with only a small number
of unlabeled samples. Our contributions are:

• We propose a novel and effective framework for low-
rank approximation of transformers, with the key find-
ing and novelty being mimicking the features rather than
the weights. Extensive experiments demonstrate that our
methods can compress both vanilla transformers and its
variants in CV and NLP. With fewer parameters and



higher throughput, our compressed models achieve com-
parable accuracy to the original models.

• Our framework is few-shot, unsupervised and swift.
Given a pre-set compression target and a small number
of unlabeled samples, our methods can quickly determine
the sub-model architecture and fine-tune the compressed
model. No extra hyper-parameters are introduced.

• The compressed model can be generalized into various
downstream tasks. Experimental results show that even
under the few-shot settings, our methods achieve excel-
lent generalization of the compressed model.

Related Works
We first briefly review some closely related works.

Transformers
The transformer (Vaswani et al. 2017) utilizes the multi-
head self-attention (MHSA) mechanism to handle long-
range dependencies between pairs of input tokens in NLP
tasks. Language models constructed with transformers have
achieved widespread success in NLP tasks such as transla-
tion (Vaswani et al. 2017), language modeling (Baevski and
Auli 2018) and question answering (Kenton and Toutanova
2019). Transformers have recently been introduced into the
CV field, too. ViT (Dosovitskiy et al. 2021) first demon-
strated that with sufficient training data (e.g., JFT-300M),
standard transformers can achieve state-of-the-art accuracy
in image classification tasks. DeiT (Touvron et al. 2021)
further explores existing data augmentation and regulariza-
tion strategies. With the same architecture as ViT, DeiT is
also effective when using the smaller ImageNet-1K dataset.
Swin Transformer (Liu et al. 2021) applies a shifted win-
dowing scheme. In this paper, we will show that our feature-
mimicking approach can handle standard transformers and
their variants in both CV and NLP.

Low-Rank Approximation for Transformers
Transformer models tend to have a large number of param-
eters and are computationally intensive. To reduce model
size and speed up inference, a natural idea is to factorize
one weight matrix into two or more smaller matrices. A
common technique for low-rank factorization is Singular
Value Decomposition (SVD) (Golub and Van Loan 2013),
which can be applied to any linear layer. Noach and Gold-
berg (2020) first decomposed each weight matrix by SVD.
Then, they used knowledge distillation to refine the weights.
Drone (Chen et al. 2021) minimizes the approximation er-
ror of the input representations layer-by-layer by exploiting
the full dataset. Later we show that it is a better idea to ap-
proximate the output vector at low rank. FWSVD (Hsu et al.
2022) introduces Fisher information to measure the impor-
tance of parameters. But it requires a large amount of labeled
data to fine-tune the compressed model, and the weight ma-
trices are not necessarily low rank—in fact they are often
full rank instead. We perform low-rank decomposition on
the output feature maps rather than the weights, which re-
quires only a small number of unlabeled samples. To the best
of our knowledge, although weight matrix decomposition is

widespread, this is the first attempt to decompose transform-
ers’ features under the few-shot unsupervised settings.

Feature Mimicking
Knowledge Distillation (KD) (Hinton, Vinyals, and Dean
2015) is a popular method to train student networks with
the help of high-capability teacher networks. The typical
KD approach attempts to refine the softmax outputs, and
the feature mimicking distillation method was first proposed
by FitNets (Romero et al. 2014). Wang, Ge, and Wu (2021)
demonstrate that it is more beneficial to make students only
mimic the teacher’s features in the penultimate layer. Fea-
ture mimicking is also often used for model compression.
FSKD (Li et al. 2020) adds a 1×1 convolutional layer after
each layer and mimics the one-layer feature maps by solv-
ing a least-square problem. CD (Bai et al. 2020) optimizes
model layer-by-layer by cross distillation between the com-
pressed and the original networks. MiR (Wang et al. 2022)
is a global distillation method that only mimics one layer’s
feature map. Our framework combines their ideas, i.e., first,
we mimic the single-layer feature maps and then distill the
global features. Numerous experiments demonstrate the ef-
fectiveness of our approach.

The Proposed Methods
We describe our framework in this section, starting from the
preliminaries. Then, we present our low-rank decomposi-
tion method, Atomic Feature Mimicking (AFM). To auto-
matically determine the structure of the compressed model,
we propose Adaptive Atomic Feature Mimicking (AAFM),
a simple but effective low-rank approximation framework.
Finally, we apply Global Feature Mimicking (GFM) to min-
imize the output features’ difference. Throughout the com-
pression process, our framework requires only a small num-
ber of unlabeled samples.

Preliminaries
We first introduce the classical low-rank decomposition
method. Suppose we have a fully-connected (FC) layer,
whose input is a matrix x ∈ Rn×c and output is another
matrix y ∈ Rm×c. The relationship between them is simple:

y = Wx+ b , (1)

where W ∈ Rm×n and b ∈ Rm. A standard way to acceler-
ate this computation is to perform low-rank approximation
of W , i.e.,

y ≈ W2(W1x+ b1) + b2 , (2)
where W1 ∈ Rk×n, b1 ∈ Rk and W2 ∈ Rm×k, b2 ∈ Rm.
The solution of Eq. 2 can be obtained by applying SVD on
W . We can decompose W into

W = USV T , (3)

where U ∈ Rm×m and V ∈ Rn×n are orthonormal matri-
ces. S ∈ Rm×n is a diagonal rectangular matrix containing
singular values in the decreasing order. If we only use the
largest k terms of the singular values, the resulting matrix is
an optimal approximation of W with a lower rank k < n:

W ≈ U ′V ′T , (4)



where U ′ ∈ Rm×k and V ′ ∈ Rk×n are the rank-k approxi-
mation matrices by taking U ′ = US

1
2

k and V ′ = V S
1
2

k , and

S
1
2

k is a diagonal matrix formed by the square-roots of the
corresponding top k singular values in S. Then, the original
Eq. 1 can be approximated as:

y = Wx+ b ≈ U ′V ′Tx+ b. (5)

After this low-rank approximation, the number of param-
eters in this linear layer decreases from O(mn) to O((m +
n)k). However, in many models, particularly transformer
and its variants, the weight W is nearly full rank (cf. Fig-
ure 1). In other words, if we separate one FC into two by
SVD, we have to either choose a small k but endure large
accuracy drop, or use a large k but increase the model size.

Atomic Feature Mimicking (AFM)
Now we propose Atomic Feature Mimicking (AFM). In-
stead of decomposing the model weights, our AFM aims to
factorize the output features. Since we only mimic the fea-
ture within one single layer and do not involve any other
layers, it is atomic.

Specifically, we follow the notation described in Wu
(2020). Let us treat the output feature in Rm×c as c instan-
tiations of the random feature vector y (each in Rm), and
compute the covariance matrix:

Cov(y) = E
[
yyT

]
− E[y]E[y]T , (6)

where E[·] is the expectation operator. Since Cov(y) is posi-
tive semi-definite, its eigendecomposition (i.e., the principal
component analysis or PCA) is

Cov(y) = USUT . (7)

We only keep the top k eigenvalues and extract the first k
columns of U ∈ Rm×m into Uk ∈ Rm×k and UkU

T
k ≈ I ,

hence

y − E[y] ≈ UkU
T
k (y − E[y]) , or, (8)

y ≈ UkU
T
k y + E[y]− UkU

T
k E[y] . (9)

That is, one linear layer can be transformed into two:

y ≈ UkU
T
k (Wx+ b) + E[y]− UkU

T
k E[y], (10)

= Uk(U
T
k Wx+ UT

k b) + E[y]− UkU
T
k E[y], (11)

where the first FC layer has weights UT
k W ∈ Rk×n and bias

UT
k b ∈ Rk, and the second one has weights Uk ∈ Rm×k and

bias E[y]− UkU
T
k E[y] ∈ Rm.

Algorithm 1 presents the details of AFM. In order to cal-
culate the covariance matrix, we randomly select a small
number of samples from the training dataset to establish
a proxy dataset D. In only one forward execution, we can
gather the output features for computing the covariance ma-
trices in all FC layers and decompose all FCs. Note that we
adaptively update E[yyT ] and E[y] in a streaming fashion in-
stead of storing all output features. As our experiments will
show later, with only few samples we can compute weights
with good generalization and will not significantly decrease
the model accuracy.

Algorithm 1 Atomic Feature Mimicking
Input: The original model M with weights W and bias b in
the i-th layer, the proxy dataset D and a pre-set rank k.
Output: Two compressed FC layers with weights W1 and
W2, and biases b1 and b2.

1: for each sample x in D do
2: Forward propagate M(x) to obtain the output feature

y in the i-th layer and update E[yyT ] and E[y].
3: end for
4: Calculate the eigenvectors U based on Eq. 6 and Eq. 7.
5: Extract the first k columns of U into Uk, and obtain

W1 = UT
k W , b1 = UT

k b, W2 = Uk, and b2 =
E[y]− UkU

T
k E[y].

6: return (W1, b1), (W2, b2)

Figure 1 explains why we should approximate the fea-
tures rather than the weights. We send the entire ImageNet-
1K (Deng et al. 2009) validation set into DeiT-B. DeiT
models contain two components, the attention layer and the
Feed-Forward Network (FFN). Each component contains
two FC layers, which we refer to as QKV and PROJ in the
attention layer, plus FC1 and FC2 in the FFN. In particu-
lar, we collect the input and output features of the QKV and
FC1 layers in every block. Then we compute the covariance
matrix of these features separately and calculate the eigen-
values. We also decompose the weights of QKV and FC1 by
SVD. Figure 1 shows the percentages of eigen or singular
vectors we need to keep in order to reach 90% of the energy
for them. As we can see, when 90% of the energy is re-
tained, the dimensionality required for the output features is
less than the input features and model weights, which shows
that output features are more likely low-rank (i.e., decompo-
sition friendly) but the model weights are not.

Adaptive Atomic Feature Mimicking (AAFM)
As aforementioned, one great challenge in low-rank decom-
position is to accurately determine the ranks k retained by
different layers. We propose Adaptive AFM (AAFM) to
overcome this difficulty. The basic idea behind AAFM is
to keep higher rank or even not compress those more sen-
sitive layers, while adopting a more aggressive compression
strategy for those less sensitive ones.

To measure a layer’s sensitivity score, we apply the proxy
dataset D and extract the output logits of the original model
M. Then we evaluate the performance change before/after
applying AFM in a single layer. To maximize the GPU uti-
lization and to reduce the search overhead, we fix rank k to
be a multiple of 32. Then, we compute the sensitivity score
for each layer separately, as the KL-Divergence between two
models with and without AFM, i.e.,

Si(k) =
∑
x∈D

DKL(M(x,w)∥M(x,wi(k))) , (12)

where Si(k) measures how sensitive the i-th layer is when
the rank is k, and wi(k) refers to compress model weights
in the i-th layer with rank k. The larger the score Si(k), the
more sensitive this layer is.
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Figure 1: Ratio of dimensions kept in each QKV (left) and FC1 (right) layer in DeiT-B when 90% energy is retained. The output
features (shown in red) have the lowest proportion compared to the input features (shown in blue) and the weights (shown in
gray). The x-axis is the block index. DeiT-B has 12 blocks, and every block contains a QKV and an FC1 layer.

After obtaining sensitivity scores with different rank k,
given a target model size Ptar, we minimize the sum of sen-
sitivity scores of all layers, i.e.,

min
{ki}l

i=1

S =

l∑
i=1

Si(ki) (13)

s.t.
l∑

i=1

Pi(ki) ≤ Ptar , (14)

where Pi(ki) is the number of parameters for the i-th layer
with rank ki, and l is the total number of linear layers. Our
AAFM can generate multiple sub-networks from a well-
trained large model when a set of different targets Ptar are
given, which is versatile.

As ki are integers, this is an integer programming problem
and we approximately solve it by proposing a simple greedy
algorithm. It is worth noting that we have made a simplify-
ing assumption: the sensitivity of a layer is independent of
the ranks chosen for other layers. Our greedy algorithm is
not guaranteed to find the best possible configuration. How-
ever, finding the precise global minimum from all potential
rank configurations is very time-consuming, and our simpli-
fied greedy approximation can greatly speedup the search
process. Later, we will demonstrate that the adaptive config-
uration we find via the greedy algorithm achieves excellent
results in experiments for different model architecture and
in diverse tasks.

Global Feature Mimicking (GFM)
Although the AAFM reconstruction error is small in one
layer, they accumulate as more linear layers are approxi-
mated. Hence, following MiR (Wang et al. 2022), our final
step is to use Global Feature Mimicking (GFM) to correct
them after applying AAFM.

GFM is very simple: with the few-shot examples (i.e., the
proxy dataset D), we mimic the output feature in the penulti-
mate layer (before the GAP layer). We use the mean squared
error to measure the distance and the optimization is

LMSE

(
fL
c , f

L
o

)
, (15)

where fc and fo are the features of the compressed network
and the original network, respectively, and L is the index of
the layer whose features are mimicked. In ViTs, fL is the
output feature map after the final LayerNorm layer; in the
language modeling task, it is the feature map after the final
block and before the adaptive softmax layer. Note that GFM
does not involve the classification FC layer. We will empiri-
cally show that even in the few-shot setting, fine-tuning the
compressed network by GFM will not lead to overfitting,
and can be very helpful in boosting the accuracy.

In summary, our framework first uses AAFM to determine
the sub-model structure, and applies Algorithm 1 (AFM) to
decompose it, and finally uses GFM to fine-tune the com-
pressed model. Our framework only requires the unlabeled
proxy dataset D, which is unsupervised. Because the proxy
dataset D contains only a small number of samples, our ap-
proach is few-shot and fast. We only need a pre-defined com-
pression target to determine the model architecture and pa-
rameters adaptively, so no additional hyper-parameters are
introduced.

Experiments
We now evaluate our methods. We first compress DeiT and
Swin Transformers on ImageNet-1K classification. In addi-
tion, more results on downstream small-scale classification
and object detection datasets will be presented. We also eval-
uate our framework on a language modeling task. We will
demonstrate that our approaches attain equivalent accuracies
with significantly fewer parameters on these tasks. Finally,
we end this section with several analyses. All the experi-
ments were conducted with PyTorch.

Datasets and Metrics
Classification. The ImageNet-1K (Deng et al. 2009) dataset
consists of 1.28 million training and 50K validation images.
Those images have various spatial resolutions and come
from 1K different categories. ImageNet-1K is usually used
as the benchmark for model compression.

Besides ImageNet-1K, we also evaluate our compressed
models on several small-scale datasets.



Objection Detection & Segmentation. We evaluate ob-
ject detection & segmentation performance on the MS
COCO2017 (Lin et al. 2014) dataset. MS COCO2017 con-
tains 80 categories with 118K training and 5K validation im-
ages, respectively. We use mean Average Precision (mAP) to
measure the accuracy.

Language Modeling. We also evaluate our approach in
the WikiText-103 (Merity et al. 2017) dataset. WikiText-103
is composed of shuffled Wikipedia articles where the con-
text carries across sentences. The training data of WikiText-
103 comprises about 100M tokens with 28K articles and a
vocabulary of around 260K. The test data contains 245K
tokens with 4358 sentences. We use perplexity to measure
the performance of models. A lower perplexity indicates the
probability distribution is good at predicting the sample.

Compressing DeiT & Swin
As mentioned before, our method needs a proxy dataset D
to calculate the compressed weights, so we first sample 2K
images from the ImageNet-1k training dataset to form it.
Then, since larger models tend to have more parameter re-
dundancy, we test the performances of AAFM and GFM on
DeiT-B and Swin-B & L.

Implementation details. First, we set three different
compression levels when applying AAFM. In particular, 1/5,
1/4, or 1/3 of the parameters of Swin-B & Swin-L were to
be removed, while DeiT-B’s model size was reduced by 1/5,
1/3, or 2/5, respectively. We only compressed the four FC
layers in the blocks and used eight NVIDIA 3090 GPUs to
calculate the sensitivity scores. The whole AAFM process
took 0.6 hours when compressing DeiT-B. As a baseline or
comparison method for AAFM, we also performed SVD on
the original transformer model, i.e., we retain half of the sin-
gular values for each FC layer in the transformer’s blocks.

Then we fine-tuned the sub-models with GFM on the
proxy dataset. When fine-tuning DeiT-B, we initialized the
learning rate as 8e-5 and used a mini-batch size of 512.
When we fine-tuned Swin-B & Swin-L, we set the learn-
ing rate and mini-batch size as 3e-5 and 256, respectively.
In the above experiments, we used the AdamW (Loshchilov
and Hutter 2018) optimizer and the cosine decay sched-
ule (Loshchilov and Hutter 2017). The sub-models were
fine-tuned with 1000 epochs and the weight decay was 0.01.
Since the proxy dataset D is small, fine-tuning 1000 epochs
is still very fast. Random horizontal flipping, color jitter-
ing, Mixup (Zhang et al. 2018) and CutMix (Yun et al.
2019) were applied as data augmentations. Particularly, Yu
et al. (2021) found that strong regularization has a negative
influence on model performance in the later training period,
and we also noticed a similar observation during the GFM
process. Hence, in all of our experiments, we removed ran-
dom erasing (Zhong et al. 2020), Rand-Augment (Cubuk
et al. 2020) and layer dropout (Huang et al. 2016). When
fine-tuning the DeiT-B with 40% parameters removed, the
entire GFM process consumed 0.6 hours. Therefore, our
AAFM and GFM feature mimicking framework can finish
fairly quickly.

Results. Table 1 shows the results of compressing DeiT-
B and Swin-B & Swin-L. We tested model accuracy on the

Model Throughput #Param.(M) Acc. (%)
DeiT-B 619.46 86.57 81.85

+SVD 741.07 (+19.6%) 58.27 (-33%) 77.21
+GFM 80.36
+AAFM 682.23 (+10.1%) 69.25 (-20%) 81.76
+GFM 81.83
+AAFM 735.97 (+18.8%) 58.26 (-33%) 81.21
+GFM 81.62
+AAFM 771.07 (+24.5%) 51.95 (-40%) 80.33
+GFM 81.28

Swin-B 458.86 88.10 83.47
+SVD 489.95 (+6.8%) 60.20 (-33%) 74.30
+GFM 81.13
+AAFM 471.64 (+2.8%) 70.50 (-20%) 82.89
+GFM 83.19
+AAFM 477.71 (+4.1%) 66.09 (-25%) 82.41
+GFM 83.00
+AAFM 489.46 (+6.7%) 60.20 (-33%) 81.15
+GFM 82.68

Swin-L 257.40 196.87 86.25
+SVD 288.82 (+12.2%) 134.09 (-33%) 82.02
+GFM 84.52
+AAFM 275.14 (+6.9%) 157.52 (-20%) 85.94
+GFM 86.01
+AAFM 282.58 (+9.8%) 147.67 (-25%) 85.73
+GFM 85.83
+AAFM 292.04 (+13.5%) 134.09 (-33%) 85.04
+GFM 85.44

Table 1: Top-1 accuracy (%) of performing low-rank approx-
imation on DeiT-B and Swin-B & Swin-L.

ImageNet-1K validation dataset. During testing, the shorter
side was resized as 256 by bilinear interpolation and then we
cropped the 224×224 image patch in the center. The accu-
racy of the last epoch is reported. We also list the throughput
in a 3090 GPU with a fixed 512 mini-batch size.

Comparison between the original models and our com-
pressed models proves the effectiveness of our framework.
We obtained a 24.5% throughput speedup and only a 0.57%
accuracy reduction when we removed 40% of the parame-
ters in DeiT-B, while we lost only 0.02% accuracy when we
removed 20% of the parameters. When compressing Swin-
B, we gained a 6.7% increase in throughput and a 33% de-
crease in parameters with dropping 0.79% accuracy. It is
worth noting that our AAFM performance far exceeds that
of traditional SVD methods, for example, when compress-
ing DeiT-B and Swin-B by removing 33% of the parameters,
our AAFM is 4 percentage points (81.21% vs. 77.21%) and
6.85 percentage points (81.15% vs. 74.30%) higher than that
of SVD, respectively. Furthermore, Swin-L is pre-trained on
the large-scale ImageNet-21K dataset, and our method has
been demonstrated to be effective in it, too.

Transferring Ability
To further validate the effectiveness of our methods, we in-
vestigated the compressed models’ transferring ability in
several downstream tasks. We first investigated Swin-B’s
mAP on MS COCO2017 detection and segmentation. Then



Backbone Tasks AP AP50 AP75 APS APM APL

Swin-B Detection 52.0 70.8 56.4 35.0 55.6 67.4
Ours 51.9 70.5 56.4 35.5 55.8 67.0

Swin-B Segmentation 45.0 68.3 48.8 28.5 48.6 60.6
Ours 44.7 67.9 48.5 28.8 48.4 59.7

Table 2: mAP of Swin-B and our compressed model on the MS COCO2017 validation dataset.

Models DeiT-B Ours
#Param.(M) 86.57 69.25 58.26 51.95
CIFAR-100 90.99 90.67 90.37 90.17
CUB-200 85.88 85.07 85.38 84.85
Cars 90.45 91.18 90.66 90.72
Aircraft 79.87 80.92 81.19 80.80
Pets 94.74 94.22 93.98 93.95
Flowers 97.77 97.45 97.30 97.02
iNaturalist-2019 77.39 77.56 76.70 77.13

Table 3: Accuracy (%) of DeiT-B and our compressed mod-
els on different small-scale classification datasets.

we tested the accuracy of the compressed DeiT-B in small-
scale classification datasets.

Implementation details. We used both the original Swin-
B and our compressed Swin-B with 33% parameters re-
moved as backbones of Cascade Mask R-CNN (Cai and
Vasconcelos 2018). We followed the training settings of the
original Swin Transformer paper and set the training sched-
ule as 3x (36 epochs).

When fine-tuning the compressed DeiT-B, we adopted
mini-batch size 1024 and learning rate 1e-4. We applied
the AdamW optimizer, cosine learning rate schedule and
the CutMix augmentation strategy. CutMix’s ratio was set
to 0.5. We trained models with 100 epochs.

Results. Table 2 shows the detection and segmentation
results on MS-COCO2017. The compressed Swin-B model
achieved similar mAPs compared to the original model. For
example, after removing 33% of the backbone parameters,
our model achieved 51.9 and 44.7 mAPs on object detec-
tion and segmentation tasks, which is on par with that of the
original Swin-B.

Table 3 shows the classification results. The compressed
models always achieved similar accuracy to DeiT-B on all
7 datasets, indicating that our method maintains the gener-
alization ability of the original model. On the Cars, Aircraft
and iNaturalist-2019 datasets, our compressed model with
fewer parameters even performed better than the original
DeiT-B model.

Compressing Transformer for NLP Tasks
We also compressed the standard transformer with adap-
tive input representations (Baevski and Auli 2018) on the
WikiText-103 dataset. Our methods achieved comparable
perplexity with the original model.

Implementation details. We implemented our methods
based on fairseq (Ott et al. 2019). The original transformer
model follows the architectural choice described in Baevski

Dataset Throughput #Param.(M) Perplexity
WikiText-103 3137.3 246.9 18.66

+SVD 3303.3 (+5.3%) 196.6 (-20%) 29.76
+GFM 20.24
+AAFM 3252.3 (+3.7%) 209.9 (-15%) 20.23
+GFM 19.07
+AAFM 3293.2 (+5.0%) 196.6 (-20%) 22.34
+GFM 19.46
+AAFM 3356.4 (+7.0%) 185.2 (-25%) 26.20
+GFM 20.05

Table 4: Results of compressing the standard transformer
with adaptive inputs in language modeling.

and Auli (2018), which includes 16 decoder blocks and sinu-
soidal position embeddings in the input layer. Each MHSA
module has 8 heads and adaptive input representations have
three bands of size 20K, 40K and 200K. The embedding
layer and FFN’s hidden-state have dimensions of 1024 and
4096, respectively. We sampled 4K sentences to form the
proxy dataset D. Then, we reduced the parameters by 15%,
20% and 25%.

During the GFM process, we removed layer dropout and
trained on 8 GPUs. We limited the number of tokens per
GPU to a maximum threshold 1536, which means each GPU
processes 1536 tokens using the same model parameters. We
accumulated gradient updates over 8 batches before commit-
ting a parameter update following Ott et al. (2018). We set
the batch size as 32 and trained 1000 updates. The AdamW
optimizer was used and the weight decay was 0.05. The
learning rate was linearly warmed up from 1e-7 to 3e-5
for 30 steps and then annealed using a cosine learning rate
schedule. We renormalized gradients if their norm exceeds
0.1. In particular, we fixed the adaptive input and softmax
layer during fine-tuning.

Results. Table 4 shows the results on WikiText-103. Dur-
ing testing, we denoted the size of context window as 2560.
Similar to previous experiments, our algorithms obtained re-
sults that are comparable to those of the original model. Es-
pecially, AAFM decreased the perplexity by 7.42 compared
to SVD when removing 20% parameters.

Analyses
To explore the impact of different modules of our method,
we performed three analyses in this section.

The influence of AAFM. We first explore the influence
of our adaptive structure searching approach. In particular,
we take Swin-B and the transformer trained in WikiText-103
as examples, and we compress these two models by 33%



Model Adaptive Top-1 Acc. (%) Perplexity
Original Model 83.47 18.66

+AFM
%

78.16 22.55
+GFM 81.61 20.21
+Adaptive SVD

"
80.24 122.41

+GFM 82.49 20.23

Table 5: Top-1 accuracy (%) and perplexity of exploring the
impact of adaptive structure searching method on Swin-B
and transformer.

and 20% of parameters, respectively. We design two exper-
iments. The first employs AFM while retaining half of the
dimensions for each FC layer in model blocks, while the sec-
ond one exploits the model structure searched by AAFM but
using SVD to initialize sub-model. We refer to the second
method as adaptive SVD. For a fair comparison, we adopt
the same training strategies as above.

Table 5 summarizes the results. We discovered that our
AFM outperformed SVD but was inferior to AAFM. For ex-
ample, on Swin-B AFM achieved 78.16% accuracy, which is
higher than SVD’s 74.30% accuracy but lower than AAFM’s
81.15% accuracy (cf. Table 1). Furthermore, the model
structures we searched have good generalization. For exam-
ple, our adaptive SVD obtained 80.24% accuracy on the Im-
ageNet validation dataset, which is better than the typical
SVD low-rank approximation method (77.21%, cf. Table 1).

Knowledge distillation. We then compare several differ-
ent distillation strategies when fine-tuning sub-models. We
continue to use the Swin-B and transformer sub-models with
33 and 25 percent parameter removal, respectively. Besides
GFM, we consider the following distillation approaches:

• Soft distillation. q is the teacher’s output after softmax.
p is the output of the compressed sub-model and y is the
true label. The soft distillation objective is:

LCE (p, y) + αLKL(p, q). (16)

• Soft distillation without labels. The loss function is:

LKL(p, q). (17)

• Hard distillation. Let yt = argmax(q) be the hard deci-
sion of the teacher. The loss function of hard-label distil-
lation is:

LCE (p, y) + αLCE (p, yt) . (18)

• Hard distillation without labels. The loss function is:

LCE (p, yt) . (19)

• GFM with labels. We add label information into GFM,
i.e.,

LCE (p, y) + αLMSE

(
fL
c , f

L
o

)
. (20)

We set the α as 1.0 and illustrate the results in Table 6.
We can conclude that under the few-shot settings, including
label information when training the compressed model can
easily lead to overfitting, while our GFM still obtains the
best results when fine-tuning the compressed model.

Distillation Top 1 Acc. (%) Perplexity

Soft w/ label 82.34 24.81
w/o label 82.38 20.53

Hard w/ label 81.05 323.95
w/o label 82.08 1.2× 105

GFM w/ label 78.81 20.10
w/o label 82.68 20.05

Table 6: Results on the ImageNet-1K and WikiText-103 val-
idation datasets with different distillation strategies.

Sizes 1K 2K 5K 10K 100K 1.28M
AAFM 81.21 81.15 81.20 81.31 81.30 81.22
GFM 82.38 82.68 82.75 82.88 82.97 82.99

Table 7: Top-1 accuracy (%) on the ImageNet-1K validation
set with different number of training samples in the proxy
dataset D.

The proxy dataset size. We further research on the influ-
ence of the number of training samples in the proxy dataset
D. Let us take Swin-B with 33% parameters removed as
an example. We set the size of dataset D to 1K, 2K, 5K,
10K, 100K and the whole training dataset respectively. We
applied AAFM and GFM sequentially on different proxy
datasets. In particular, we trained 10 and 100 epochs when
D contains the full training samples and 100K samples, re-
spectively, and trained 1000 epochs in other cases.

The results are showed in Table 7. The 1.28M in the ta-
ble refers to the entire dataset. We can conclude the final
accuracy increases as the sample size grows, but the bene-
fit is very limited. When applying the full training dataset,
the AAFM and final accuracy is only 0.07% (81.22% vs.
81.15%) and 0.31% (82.99% vs. 82.68%) higher than using
2K samples each, respectively. This indicates that few unla-
beled samples are sufficient for our algorithms.

Discussions and Conclusions
In this paper, we presented a novel framework for low-rank
approximation of transformers. We built our framework after
revealing that the features are low-rank but model weights
are not, which worked well in both CV and MLP. Extensive
experiments confirmed the efficacy of our framework. We
can quickly reduce the model size with small drop in model
accuracy. In addition, our approach requires only a small
number of unlabeled samples and effectively preserves the
original model’s generalization capability.

We discover that because low-rank decomposition divides
a linear layer into two layers, it does not improve throughput
significantly. Therefore, applying low-rank decomposition
in a reasonable way to speed up inference is an intriguing
future direction. Besides this, we randomly select samples
to form the proxy dataset, so we will continue to explore
the effects of data distribution in the proxy dataset. Further-
more, our method can theoretically be applied to various
deep learning models, such as CNNs, so we will continue
to extend our method to these models in the future.
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