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Abstract

The training datasets used in long-tailed recognition are extremely unbal-
anced, resulting in signi�cant variation in per-class accuracy across cate-
gories. Prior works mostly used average accuracy to evaluate their algo-
rithms, which easily ignores those worst-performing categories. In this pa-
per, we aim to enhance the accuracy of the worst-performing categories and
utilize the harmonic mean and geometric mean to assess the model's per-
formance. We revive the balanced undersampling idea to achieve this goal.
In few-shot learning, balanced subsets are few-shot and will surely under-
�t, hence it is not used in modern long-tailed learning. But, we �nd that
it produces a more equitable distribution of accuracy across categories with
much higher harmonic and geometric mean accuracy, but with lower average
accuracy. Moreover, we devise a straightforward model ensemble strategy,
which does not result in any additional overhead and achieves improved har-
monic and geometric mean while keeping the average accuracy almost intact
when compared to state-of-the-art long-tailed learning methods. We validate
the e�ectiveness of our approach on widely utilized benchmark datasets for
long-tailed learning. Our code is at https://github.com/yuhao318/BTM/.
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1. Introduction1

With the blessing of many balanced large-scale high-quality datasets, such2

as ImageNet [1] and Places [2], deep neural networks have made signi�cant3

breakthroughs in many computer vision tasks. These large-scale datasets4

are balanced, i.e., the number of samples in each class will be close to each5

other. However, in many practical applications, the data tend to follow6

a long-tailed distribution, that is, the number of training images in each7

category is severely imbalanced. To solve the long-tailed recognition prob-8

lem, researchers have proposed many long-tailed recognition algorithms and9

achieved high average accuracy on many long-tailed datasets.10

Previous long-tailed classi�cation algorithms tend to manually split all11

classes into �few�, �medium�, and �many� subsets based on the number of12

training samples in each class, and the accuracy within each subset is usu-13

ally reported along with the overall test set accuracy. However, focusing14

on average accuracy alone is too crude, as some worst-performing classes15

have zero accuracies and are overshadowed by other classes. Furthermore,16

classes in the �few� subset do not necessarily perform worse than those in the17

�medium� or �many� subsets [3]. Although the average accuracy is widely18

used in long-tailed classi�cation as an optimization target, the industrial19

community considers the accuracies of those worst categories more critical.20

Therefore, it is not enough to focus on improving the average accuracy�21

worst-performing categories need more attention. Because the harmonic and22

geometric mean of per-class accuracy are more sensitive to the worst cat-23

egories, GML [3] applies these metrics to measure the performance of the24

worst categories. Since the harmonic mean is numerically unstable to be25

optimized, GML chooses to maximize the geometric mean of per-class recall.26

In this paper, we believe that compared to the geometric mean, the har-27

monic mean can better re�ect the performance of the worst categories. To28

help the worst-performing categories, we argue that we need to revive un-29

dersampling : using few-shot balanced subsets to train models for long-tailed30

learning. Balanced undersampling has never been popular or even used prac-31

tically in long-tailed learning, because it obviously will cause severe under-32

�tting. But, we �nd that on top of a regularly learned backbone network,33

�ne-tuning on a few-shot balanced subset can (surprisingly) improve the har-34

monic and geometric mean greatly, while only slightly decreasing the average35

accuracy. Our next surprising �nding is that we can ensemble several models36

�ne-tuned on multiple balanced few-shot datasets by directly averaging the37
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model weights. This model averaging not only improves harmonic and geo-38

metric mean, but also adds no extra inference cost because its �nal model is39

a single network instead of many networks. In addition, our training strategy40

can also slightly increase the accuracy of the �few� classes in general, which41

further demonstrates the e�ectiveness of our approach. We name our plug-42

and-play and e�cient training strategy as Balanced Training and Merging43

(BTM). In particular, our contributions are as follows:44

� We discover that balanced training drives the model to produce a more45

uniform recall distribution across categories, and averaging the �ne-46

tuned models can further improve the harmonic and geometric mean.47

� Based on our observations, we propose a novel plug-and-play train-48

ing strategy, i.e., Balanced Training and Merging (BTM). With only49

a small number of samples and a little additional training overhead,50

BTM can signi�cantly improve the worst-performing categories with51

no additional inference overhead.52

� Our BTM is easy-to-implement, light-weight, and can be integrated53

with other long-tailed classi�cation algorithms easily. We conduct54

abundant experiments to demonstrate its e�ectiveness.55

2. Related work56

In this section, we review long-tailed learning methods.57

2.1. Re-sampling and re-weighting methods.58

Re-sampling methods either over-sample minority categories [4] or under-59

sample majority categories [5]. Re-weighting methods [6], on the other hand,60

assign di�erent weights to each category when de�ning the loss function.61

CMO [7] pastes an image from a minority class onto rich-context images from62

a majority class to over-sample the tailed classes. Zhang et al. [8] introduce63

representative feature extraction and e�ective sample modeling to mitigate64

the prior and representation gaps. WGCC [9] introduces a weight-guided65

class complementing framework to mitigate the gradient shift issue caused66

by un-sampled classes in long-tailed scenarios. DBN-Mix [10] combines two67

samples generated by a uniform sampler and a re-balanced sampler to aug-68

ment the training dataset. RML [11] design a re-weighting scheme so that the69
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augmented positive gradients of minority samples will be emphasized. Re-70

sampling has the potential risk of either over-�tting or under-�tting, while71

re-weighting makes the loss function hard to optimize. Our BTM is based72

on undersampling but avoids under-�tting.73

2.2. Decoupling methods.74

Decoupling methods are based on the observation that over-sampling neg-75

atively a�ects the learned feature representations, but is critical for learning76

an unbiased linear classi�er. cRT [12] �rst trains a network using a plain77

cross-entropy loss and then re-trains the classi�er using a balanced sam-78

pler. MiSLAS [13] further considers model calibration and uses mixup [14]79

and label-aware smoothing [13] in the �rst and second stage, respectively.80

GCL [15] adds di�erent amplitude Gaussian perturbations to each class.81

PASCL [16] applies asymmetric supervised contrastive learning to encour-82

age the model to distinguish between tail-class in-distribution samples and83

OOD samples. LPT [17] introduces several trainable prompts into the decou-84

pling training. H2T [18] augments tail classes by grafting diverse semantic85

information from head classes in the second stage. Our BTM adds an addi-86

tional plug-and-play balanced training stage to the two-stage approach, but87

only requires little computational overhead and incurs no inference overhead.88

2.3. Ensemble methods.89

BBN [19] uses two branches that use di�erent sampling strategies during90

training. RIDE [20] attaches multiple heads to a single network and uses91

an additional loss function during training to increase the diversity of each92

head. During inference, special routing rules are applied to select appro-93

priate heads for prediction. Chen et al. [21] transfer knowledge from head94

classes to get the target probability density of tail classes. SHIKE [22] ap-95

plies the MoE architecture to fuse depth-wise features. MGKT [23] proposes96

a multi-scale feature fusion network, which aims to fully mine the rich in-97

formation of the features. LCReg [24] learns a set of class-agnostic latent98

features shared by both head and tail classes, and then uses semantic data99

augmentation on the latent features to implicitly increase the diversity of the100

training sample. NCL++ [25] enforces consistent predictions among di�er-101

ent experts and augmented copies, which reduces the learning uncertainties.102

Our BTM approach also merges multiple models trained on some randomly103

sampled few-shot datasets, but we focus on improving the accuracy of those104

worst-performing categories rather than the overall average accuracy.105
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2.4. Other methods.106

Besides the methods mentioned above, some methods try to use self-107

supervised learning to tackle the long-tailed recognition problem. For exam-108

ple, PaCo [26] uses a balanced supervised contrastive loss [27]. OTmix [28]109

proposes an adaptive image-mixing method to incorporate both class-level110

and sample-level information. However, these works usually use a lot of ad-111

ditional training data. Recently, Du and Wu [3] propose GML to focus more112

on the worst categories and propose to use the harmonic and geometric mean113

of per-class accuracy instead of the overall accuracy on the whole test set as114

an alternative metric. Our work shares the same goal as GML but achieves115

higher harmonic and geometric mean. Later we will also show that our BTM116

can be combined with GML to obtain better results.117

3. Method118

We describe our framework in this section, starting by introducing the119

evaluation metrics we prefer, followed by novel questions and key observations120

we revealed in two-stage decoupling methods. Based on these observations,121

we propose our training pipeline, Balanced Training and Merging (BTM), a122

simple plug-and-play strategy to improve the worst-performing categories.123

3.1. Harmonic Mean is the Preferred Evaluation Metric124

For long-tailed learning, given a real number p and the per-class accuracy125

{x1, x2, · · · , xn} on a balanced test set, the generalized mean with exponent126

p of these accuracies is127

Mp(x1, . . . , xn) =

(
1

n

n∑
i=1

xp
i

)1/p

. (1)

For instance, when p = −∞,M−∞(x1, . . . , xn) = min{x1, . . . , xn} is the mini-128

mum of per-class accuracy. When p is −1 and 0, M−1(x1, . . . , xn) =
n

1
x1

+···+ 1
xn

129

and M0(x1, . . . , xn) = n
√
x1 · · · · · xn are the harmonic and geometric mean,130

respectively. In particular, the arithmetic mean accuracy, M1(x1, . . . , xn) =131

x1+···+xn

n
, is frequently-used in long-tailed learning.132

Compared to average accuracy, worst-case accuracy may be more impor-133

tant [3]. For example, given the per-class accuracy {x1, x2} = {0.1, 0.9},134

its arithmetic mean is 0.1+0.9
2

= 0.5. While this result seems well, it has135
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a minimum accuracy of 0.1, which indicates this algorithm is unusable in136

real-world applications. Compared to the geometric mean
√
0.1× 0.9 = 0.3,137

the harmonic mean 2
1
0.1

+ 1
0.9

= 0.18 is more sensitive to the low recall values138

and has smaller absolute value, which is closer to M−∞ = 0.1, the worst-case139

accuracy we want to maximize.140

However, it is hard to optimize the minimum accuracy directly. The har-141

monic mean is de�ned using reciprocal, which makes it hard and numerically142

unstable to be optimized [3]. Note that even 1% improvement in harmonic143

mean is very di�cult, and some state-of-the-art long-tail recognition algo-144

rithms have high average accuracy but very low harmonic mean (cf. Table 3145

for more details). The previous work GML chooses to maximize the geomet-146

ric mean over a mini-batch as a surrogate for the harmonic mean accuracy. In147

this paper, our BTM applies balanced �ne-tuning of the pre-trained model,148

which can help the backbone to obtain a more even feature distribution and149

be conducive to balancing the accuracy between di�erent classes. Therefore,150

compared with GML, our BTM is a more direct solution to improve the151

harmonic mean as well as the geometric mean.152

3.2. Can We Revive the Undersampling Strategy?153

As is shown in GML, the per-class accuracy of models trained on an im-154

balanced dataset varies a lot from category to category. There are two rec-155

ognized reasons for that. First, some categories are essentially more di�cult156

than others. Second, there remains a large di�erence between the numbers157

of samples in di�erent categories [5]. The �rst di�culty stems from the prop-158

erty of each category itself and is hard to handle. In this paper, we focus on159

the second di�culty and try to deal with the imbalanced data distribution160

with undersampling technology.161

To solve the di�culty induced by imbalance, the most natural solution is162

to have a balanced training set. As oversampling leads to severe over�tting,163

undersampling seems a better choice. But, in long-tailed datasets, tail cat-164

egories often have very limited (e.g., 5) training samples. Hence a balanced165

under-sampled dataset will be few-shot. Therefore, a key question is:166

Question 1. Can we improve the accuracy of the worst categories with the167

few-shot balanced dataset?168

We conducted a simple experiment to answer this question. Two-stage169

decoupling methods train the whole network in the �rst stage, and then170
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Figure 1: a and b present the harmonic and geometric mean of interpolated models between
the raw model f (λ = 0) and the �ne-tuned model fD (λ = 1), respectively.

�ne-tune the classi�er in the second stage. Here we take the ResNet-50 [29]171

pre-trained with �rst stage MiSLAS in the Places-LT [2, 30] dataset as the172

original model f , and randomly sample a 5-shot balanced dataset D from the173

training data. Then we �ne-tune f using D for 30 epochs and obtain a model174

fD. After �ne-tuning, following [31], we merge the original and �ne-tuned175

models by linear interpolation. Given λ ∈ [0, 1], the interpolated model is176

fD
λ = λfD + (1− λ)f . (2)

Figure 1a and 1b show the harmonic and geometric mean of interpo-177

lated models. These curves roughly describe the performance of the worst-178

performing categories. Those results show that179

Observation 1. For the �rst-stage pre-trained model in long-tailed learning,180

�ne-tuning with a few-shot balanced dataset can highly improve the accuracy181

in the worst-performing categories.182

Besides, we also �nd that with the decrease of λ, the harmonic and geo-183

metric mean of the interpolated model fD
λ show a monotonically decreasing184

trend, which indicates185

Observation 2. The harmonic and geometric mean of these interpolated186

models present smooth and monotonic curves.187
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Figure 2: Blue curves in a and b present the harmonic and geometric mean of interpolated
models between the �ne-tuned model fDA (λ = 0) and the �ne-tuned model fDB (λ = 1),
respectively. Yellow curves mean the harmonic and geometric mean of fDA∪B .

These two surprising �ndings answer Question 1: we can �ne-tune the188

whole network with only few training samples. Even if only scarce training189

data is available, the �ne-tuning optimization process hardly su�ers from190

over�tting. That is, if we pay attention to the proper metric, we can revive191

undersampling. Then, a natural question is:192

Question 2. Can we further improve both worst-case and average accuracy193

with few-shot balanced undersampling?194

Note that Observation 2 gives us an insight into how interpolated models195

might behave if we have multiple models �ne-tuned on di�erent balanced196

datasets. Therefore, we �ne-tuned f on di�erent 5-shot balanced datasets197

DA and DB to obtain �ne-tuned models fDA and fDB , respectively. Then198

we merge them by linear interpolation, too:199

f
D

A
λ↔B = (1− λ)fDA + λfDB . (3)

Furthermore, we also merged the balanced data A and B into A ∪ B,200

then �ne-tuned f using A∪B to obtain fDA∪B . Note that DA∪B is no longer201

balanced. Figure 2 presents the experimental results. With di�erent balanced202

tiny sets, the �ne-tuned models fDA and fDB have higher harmonic and203

geometric mean than the original model. We also have the two observation,204
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Observation 3. The harmonic and geometric mean of the original model205

fDA and fDB are both higher than the ones of fDA∪B .206

This observation suggests that balancing is the key to help the worst-207

performing categories. DA∪B, despite having more training data, is imbal-208

anced and performs worse than either DA or DB. And,209

Observation 4. With appropriate λ (e.g., λ = 0.5), the interpolated models210

f
D

A
λ↔B have higher harmonic and geometric mean than both fDA and fDB .211

This �nding indicates that after balanced training, we can continue to212

merge the �ne-tuned models to achieve higher performance in the worst-213

performing categories.214

3.3. Balanced Training and Merging215

Based on our questions and observations, we propose Balanced Training216

and Merging (BTM) to revive undersampling for long-tailed learning.217

Previous decoupling methods are often divided into two steps: �rst, train218

a model using the original long-tailed training set, which does not take care219

of imbalance; second, freeze the backbone network and then only �ne-tune220

the classi�er of the model. Note that our previous observations are all for the221

pre-trained model in the �rst stage, so we insert our BTM algorithm into the222

�rst and second stages. The detailed information is shown in Algorithm 1.223

We insert a plug-and-play BTM module between the �rst and second224

stages in any existing decoupling methods. Thus it can be widely applied225

to various decoupling methods. When merging the �ne-tuned models, we226

directly set the weights of each model as 1/ND. This is designed to make227

our approach as �exible and simple as possible. If there already are the228

pre-trained weights of the �rst pre-train stage, we can skip the �rst step.229

Our BTM module can be plugged into long-tailed learning methods other230

than the decoupling ones. However, if the pre-trained model in a long-tailed231

algorithm has already considered and handled the imbalance property, it is232

not suitable for BTM. We propose a simple modi�cation correspondingly,233

which converts the `Pre-train' stage into two stages (`Pre-train' and `FC'):234

� Pre-train. Follow the original training strategy with imbalance han-235

dling to obtain a pre-trained model.236

� FC. Use the cross-entropy loss to �ne-tune only the classi�er of the237

model on all training data which are imbalanced.238

9



Algorithm 1: The BTM framework.

Input: The whole training set D.
Output: A long-tailed learning model with more balanced precision

distribution.

1 Pre-train. Follow the original �rst-stage training strategy and
directly train a model without handling imbalance.

2 Dataset sampling. Randomly sample ND few-shot balanced
datasets from the whole training set D, and each balanced dataset
contains only NC samples for each category.

3 BTM. Fine-tune the whole model (including both backbone and
classi�er) on these ND few-shot balanced datasets, then merge the
�ne-tuned ND models using simple averaging.

4 Post-train. Freeze the merged model's backbone, then follow the
original second-stage training strategy and only �ne-tune the
classi�er.

Note that other stages remain unchanged and are omitted from the above239

list. In the `FC' stage, we only need to �ne-tune the classi�cation layer, so240

our lightweight framework only requires few computational resources. The241

main reason for this design is to insert our BTM algorithm into existing242

models with very low cost, since BTM is designed for one-stage models (i.e.243

classi�er does not handle imbalance well). If BTM is used directly on an244

already trained model, the harmonic and geometric mean increases are not245

signi�cant (cf. Table 8 for more details). No matter whether imbalance is246

handled or not in the `Pre-train' stage, the backbone is always useful in our247

BTM framework. But, the `FC' stage needs to prepare an FC that does not248

handle imbalance, which is handled in the next `BTM' stage.249

In summary, compared with previous long-tailed classi�cation algorithms,250

BTM only adds a balance training and merging step, so our method is simple,251

plug-and-play and easy to deploy online. BTM training strategy only involves252

several balanced few-shot datasets, so the training overhead can be ignored.253

Besides, BTM has no e�ect on the model structure and generates no addi-254

tional inference overhead. To the best of our knowledge, although balanced255

undersampling and direct weight fusion have been explored in many machine256

learning tasks, they have not been successfully utilized in long-tailed learning257

yet. Our BTM approach is the �rst attempt to introduce those technologies258
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Dataset name # Categories # Training # Test Imbalance Ratio

CIFAR100-LT [32] 100 10,847 10,000 100
ImageNet-LT [1, 30] 1,000 115,846 50,000 256
Places-LT [2, 30] 365 62,500 36,500 996

iNaturalist2018 [33] 8,142 437,513 24,426 500

Table 1: Some statistics of the benchmark datasets used.

for improving the worst-performing categories.259

4. Experiments260

We conducted extensive experiments in this section. First, we introduce261

the datasets, evaluation metrics, and implementation details. Then we com-262

pare our method with various baseline and state-of-the-art methods. Finally,263

we will present ablation studies.264

4.1. Datasets, Metrics, and Implementation Details265

We use widely used long-tailed recognition datasets, i.e., CIFAR100-266

LT [32], Places-LT [2, 30], ImageNet-LT [1, 30] and iNaturalist2018 [33].267

Statistics about them can be found in Table 1. The original CIFAR100 [32],268

Places [2] and ImageNet [1] are balanced datasets. We follow previous269

work [30] to construct the long-tailed version by down-sampling the origi-270

nal training set using a Pareto distribution.271

Following GML [3], we focus on improving the worst-performing cate-272

gories in long-tailed recognition. Besides the conventional average accuracy,273

we compute the accuracy for each category and report their harmonic and274

geometric mean. These two metrics are more sensitive to small numbers275

than conventional accuracy, which are believed to better re�ect the fairness276

of a model. Following previous work [30, 13], we use ResNet-32 [29] for277

CIFAR100-LT, ResNet-152 [29] on Places-LT, ResNeXt-50 [34] or ResNet-50278

on ImageNet-LT and ResNet-50 on iNaturalist2018. We choose to apply our279

method to PaCo/GPaCo [26, 35] and MiSLAS [13], which are two current280

state-of-the-art one/two stage long-tail recognition methods.281

For the two-stage methods like MiSLAS and H2T, we directly use the282

pre-train weights of the �rst `Pre-train' stage. Then we apply our BTM and283

`Post-train' stage. We �rst train our model 30 epochs in the BTM stage.284
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After that, we follow the original second-stage training strategy and �ne-285

tune the classi�er 10 epochs in the `Post-train' stage. For the �ne-tuning286

process in the BTM stages, we follow the data augmentation strategy of the287

`Pre-train' stage, we set batch size as 256 and use SGD optimizer and set288

the momentum and weight decay as 0.9 and 5 × 10−4. The initial learning289

rate is 5× 10−3, 5× 10−3, 1× 10−3 and 5× 10−4 for CIFAR100-LT, Places-290

LT, ImageNet-LT and iNaturalist2018, respectively. The cosine learning rate291

schedule and traditional cross-entropy loss are used.292

For the other methods like PaCo/GPaCo, OTmix and PASCL, we �rst293

re-train the classi�er for 10 epochs with all training data in the `FC' stage.294

Then we �ne-tune the whole model for 30 epochs with the balanced dataset295

in the BTM stage. In the �nal `Post-train' stage, we train the classi�er for296

40 epochs. We use the same training strategy for the �rst two steps for297

simplicity, and the training hyperparameters are same as those of MiSLAS.298

In the �nal `Post-train' stage, we apply the re-weighting and re-sampling299

training strategy. The loss function is label-aware smoothing loss and we300

train the classi�er with a cosine learning rate schedule.301

4.2. Comparison with Other Methods302

Now we present the comparison of our methods with various baseline303

and state-of-the-art methods. In particular, for categories that have zero304

accuracy, we substitute it with a small number (10−3) otherwise the har-305

monic and geometric mean will be zero. In these tables, �H-Mean� stands for306

harmonic mean, �G-Mean� for geometric mean and �L-Recall� for the low-307

est recall across all categories. �H-Acc.�, �M-Acc.� and �T-Acc.� represent308

the accuracies in head, middle and tail (i.e., �many� ,�medium� and �few�)309

subsets, respectively. Note that we do not report the lowest recall in both310

ImageNet-LT and iNaturalist2018 datasets, because their lowest recall is zero311

across all algorithms. We run our BTM algorithm three times and report312

the mean and standard deviation of the �ne-tuned model.313

CIFAR100-LT. Table 2 shows the comparison results on CIFAR100-314

LT. We apply our method to MiSLAS, OTmix and H2T. Our BTM method315

improves harmonic and geometric mean by large margins while maintaining316

overall accuracy. We also list the target objective (worst category's accuracy)317

in the `L-Recall' column, where BTM shows clear advantages, too.318

Places-LT. Table 3 shows the comparison results on Places-LT. We apply319

our method to GPaCo and MiSLAS on this dataset. GPaCo is an extension320

of PaCo, which simpli�es some training settings and achieves better results.321
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Methods H-Mean G-Mean L-Recall Acc. H-Acc. M-Acc. T-Acc.

MiSLAS [13] 30.9 40.2 5.0 47.0 61.4 49.1 26.7
OTmix [28] 17.3 33.9 1.0 46.4 70.2 46.9 16.1
H2T [18] 31.5 41.1 4.0 47.8 60.5 50.5 28.8

MiSLAS + BTM 36.3±1.07 42.9±.31 8.0±.47 47.1±.22 61.0±.32 48.9±.22 27.2±.45

OTmix + BTM 32.1±1.22 35.6±.71 7.0±.82 46.3±.51 69.5±.62 46.6±.33 16.1±.42

H2T + BTM 34.2±2.07 43.5±.82 8.3±.67 47.3±.31 60.1±.45 50.2±.29 28.6±.33

Table 2: Results on the CIFAR100-LT dataset with imbalance ratio 100.

Methods H-Mean G-Mean L-Recall Acc. H-Acc. M-Acc. T�Acc.

CE 0.7 12.1 0.0 28.7 44.2 26.8 6.7
BSCE [6] 5.6 29.3 0.0 37.2 39.7 38.3 30.1
PaCo [26] 2.5 27.9 0.0 40.5 36.8 46.5 33.2
MiSLAS [13] 28.8 35.3 3.0 40.1 39.3 43.0 35.8
GPaCo [35] 10.9 35.0 0.0 41.7 39.5 47.2 33.0

MiSLAS + BTM 29.7±.53 35.6±.12 4.0±.00 40.2±.16 39.2±.13 43.1±.18 36.0±.11

GPaCo + BTM 29.4±2.55 35.9±.43 2.3±.47 40.5±.21 38.4±.33 46.3±.12 33.2±.23

Table 3: Results on the Places-LT dataset.

For example, compared with MiSLAS, GPaCo has a higher accuracy rate and322

lower harmonic and geometric mean. For MiSLAS, the conventional accuracy323

even increases along with harmonic and geometric mean. It is worth noting324

that our method also consistently outperforms the original model on the325

�few� category in general.326

ImageNet-LT. Table 4 shows the results on ImageNet-LT. We improved327

the harmonic and geometric meanwhile the overall accuracy remained almost328

unchanged. In particular, we improved the harmonic mean more than the329

geometric mean. Generally speaking, BTM successfully improves the worst-330

performing categories and does no harm to the overall accuracy.331

iNaturalist2018. Table 5 summarizes the results of the experiments332

conducted on the iNaturalist2018 dataset. The average accuracy with ap-333

plying BTM remains almost unchanged. Compared to ImageNet-LT and334

Places-LT, iNaturalist2018 has a much larger scale. Furthermore, since each335

category only has three test images, all current methods have a very low har-336

monic mean of recall on this dataset. Therefore, it is di�cult to improve the337
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Methods H-Mean G-Mean Acc. H-Acc. M-Acc. T-Acc.

CE 1.3 23.3 43.9 65.0 37.1 8.1
BSCE [6] 13.7 42.3 50.5 60.9 48.0 29.8
cRT [12] 13.8 41.4 49.6 59.3 47.1 30.9
DiVE [36] 12.8 45.5 53.6 64.6 50.9 32.0
RIDE [20] 17.3 47.6 55.7 67.4 52.3 34.8
PaCo [26] 21.8 51.3 58.3 66.2 52.6 55.1

PaCo + BTM 22.7±.51 51.6±.26 58.0±.26 65.9±.17 52.7±.24 55.4±.16

MiSLAS [13] 17.9 45.8 52.7 62.7 50.5 34.7
OTmix [28] 3.4 34.3 49.2 57.5 42.6 47.6
PASCL [16] 5.1 35.7 45.5 51.4 41.4 42.8

MiSLAS + BTM 20.3±1.36 46.2±.21 52.4±.43 62.5±.32 50.6±.11 34.8±.06

OTmix + BTM 18.2±1.33 35.5±.35 48.7±.35 56.0±.32 42.4±.22 47.8±.28

PASCL + BTM 20.7±.81 37.4±.55 45.2±.22 50.5±.31 41.5±.28 42.9±.22

Table 4: Results on the ImageNet-LT dataset. Note that MiSLAS, OTmix and PASCL
use ResNet-50 instead of ResNeXt-50 as the backbone, so we list them in separate rows.

harmonic and geometric mean on the iNaturalist2018 dataset. Nevertheless,338

we also obtain 0.3% and 0.6% improvements, respectively. Besides, although339

all algorithms obtain zero lowest recall values, our improvement in harmonic340

and geometric mean still demonstrates the e�ectiveness of BTM.341

4.3. Ablation Studies342

We conducted several ablation studies. If not otherwise speci�ed, we used343

the default training setting.344

Results of Di�erent Weight Merging Strategies. In the default345

settings, we set the merging ratio for each model weight to 1/ND. In ad-346

dition to the �Average Merging� strategy, we also explore adaptive fusion347

ratio strategies. In particular, the fusion coe�cients are proportional to each348

model's harmonic and geometric mean in the balanced training dataset, and349

the sum of these coe�cients is one. We call these strategies �Adaptive Ratio350

with H&G-Mean�. In addition, we also follow the averaging weights strat-351

egy of greedy soups [37] and use the harmonic and geometric mean as the352

criterion. That is, we use one model only when merging the model is better353

than not merging. We call these methods �Greedy Soup with H&G-Mean�.354

We conduct the experiments on Places-LT with our BTM method applied to355
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Methods H-Mean G-Mean Acc. H-Acc. M-Acc. T-Acc.

BSCE [6] 1.5 43.9 67.7 68.0 67.5 67.4
BBN [19] 1.5 45.4 69.7 52.8 74.2 68.6
DiVE [36] 1.9 49.6 71.1 70.8 70.2 67.8
MiSLAS [13] 2.0 51.3 71.6 73.2 72.4 70.4

MiSLAS + BTM 2.3±.07 51.9±.37 71.3±.14 71.1±.21 72.3±.19 70.8±.23

Table 5: Results on the iNaturalist2018 dataset.

Methods H-Mean G-Mean L-Recall Acc.

Average Merging
Merge 26.3 34.3 2.0 39.8
PT 29.8 35.6 4.0 40.3

Adaptive Ratio with H-Mean
Merge 26.7 34.4 2.0 39.9
PT 29.7 35.5 4.0 40.3

Adaptive Ratio with G-Mean
Merge 26.3 34.3 2.0 39.9
PT 29.8 35.6 4.0 40.5

Greedy Soup with H-Mean
Merge 26.8 34.3 2.0 39.8
PT 29.5 35.4 4.0 40.2

Greedy Soup with G-Mean
Merge 26.8 34.4 2.0 39.9
PT 29.7 35.6 4.0 40.3

Table 6: Results of di�erent weight merging strategies.

MiSLAS. Table 6 shows the results of merging (refer to �Merge�) and post-356

training (refer to �PT�) with di�erent strategies. It can be seen that after357

merging, these strategies of adaptively adjusting the ratios and models can358

achieve higher harmonic and geometric mean than direct average merging.359

But after post-training, these temporary small advantages are quickly wiped360

out. The simplest average merging strategy achieves the highest harmonic361

and geometric mean instead. Therefore, BTM directly uses the average merg-362

ing strategy for �exibility and simplicity.363

E�ects of the Size of the Sampled Few-Shot Datasets. In the364

default training settings, we randomly sample 10 few-shot datasets to perform365

the balanced training. And for each dataset, all categories have 10 training366

images so the sampled dataset is balanced. In this subsection, we study the367

e�ects of the size of the sampled few-shot datasets by varying the number368

of datasets sampled and the number of training images for each category.369
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ND NC H-Mean G-Mean L-Recall Acc. H-Acc. M-Acc. T-Acc.

2 10 28.4 35.0 2.0 39.8 38.6 42.7 35.8
4 10 29.1 35.1 3.0 40.0 40.0 42.9 35.8
8 10 28.2 34.8 2.0 39.9 38.7 42.8 35.8
20 10 15.2 32.6 0.0 38.3 38.7 41.1 32.6
10 5 28.5 35.1 2.0 40.1 39.1 43.1 35.8
10 10 29.7 35.6 4.0 40.2 39.2 43.1 36.0

10 20 29.6 35.3 5.0 40.1 39.2 43.0 35.8

Table 7: E�ects of the size of the sampled datasets. ND stands for the number of few-shot
datasets sampled and NC stands for the number of training images for each category.

When Backbone Classi�er H-Mean G-Mean L-Recall Acc.

Between Stage1&2 ✓ 29.0 35.2 4.0 40.2
Between Stage1&2 ✓ 29.4 35.3 4.0 40.1
Between Stage1&2 ✓ ✓ 29.8 35.6 4.0 40.3

After Stage2 ✓ 29.0 35.4 2.0 40.2
After Stage2 ✓ 28.5 35.3 2.0 40.2
After Stage2 ✓ ✓ 28.5 35.3 2.0 40.2

Table 8: When and how to perform the balanced training.

The results on Places-LT with MiSLAS are shown in Table 7. As we can see370

from the table, when we �x NC = 10, the performance can be improved at371

the beginning when we increase ND but later drops signi�cantly when we set372

ND = 20. One possible reason for this phenomenon is that the model is over-373

�tting because we use the same tail-class examples too many times. When374

ND = 20 the accuracy of the head classes decreases much less than that of375

the tail classes. On the other hand, when we �x ND = 10 and vary NC,376

the performance does not change much. Generally speaking, ND = 10 and377

NC = 10 seem to be a good choice in the Places-LT dataset. For simplicity,378

we follow this setting across all experiments.379

When and How to Perform the Balanced Training. Currently we380

add the balanced training between the �rst and second stages of decoupled381

two-stage methods and we �ne-tune the whole model using our sampled few-382

shot datasets. Here we explore some other possible design choices. Speci�-383

cally, we try to only �ne-tune the backbone or classi�er or add the balanced384

training after the second stage. The results on Places-LT with MiSLAS are385
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Methods H-Mean G-Mean L-Recall Acc.

MisLas 30.9 40.2 5.0 47.0
MisLas + GML 36.5 40.9 11.00 46.5

MisLas + BTM 36.3 42.9 8.0 47.1
MisLas + BTM + GML 36.7 41.3 8.0 46.9

Table 9: Combining GML with our method in the CIFAR100-LT dataset.

Methods H-Mean G-Mean L-Recall Acc.

MisLas 28.8 35.3 3.0 40.1
MisLas + GML 28.8 34.9 3.0 39.7

MisLas + BTM 29.7 35.6 4.0 40.2

MisLas + BTM + GML 29.9 35.4 4.0 39.9

Table 10: Combining GML with our method in the Places-LT dataset.

shown in Table 8. As we can see from the table, �ne-tuning either the back-386

bone or classi�er can improve the harmonic and geometric mean of per-class387

accuracy, but the �nal results are inferior to �ne-tuning the whole model.388

Since the scale of our sampled datasets is small, �ne-tuning the whole model389

would not cause much training overhead, we choose to �ne-tune the whole390

model in order to achieve better performance. As for when to perform the391

balanced training, we can see that adding the balanced training after the392

second stage achieves inferior performance compared to adding it between393

the �rst and second stages.394

Combining BTM with GML. GML [3] is the pioneering work in long-395

tailed recognition that aims at improving the performance of the worst cat-396

egories. Since their method is also a plug-in, here we try to combine our397

method with GML. Speci�cally, in the third stage of our method, we use398

GML to �ne-tune the classi�er. Those results are shown in Table 9, 10 and399

11. As we can see from those results, although GML can improve the har-400

monic mean, there is a noticeable drop in accuracy. BTM, on the other hand,401

does little harm to the overall accuracy. This may be because GML modi�es402

the loss and fully �ne-tunes the model with unbalanced samples, forcing a403

more balanced distribution of the model's accuracy. We used undersampling404

technology to �ne-tune the model, essentially solving the problem of preci-405
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Methods H-Mean G-Mean Accuracy

PaCo 21.8 51.3 58.3

PaCo + GML 31.1 50.8 55.6

PaCo + BTM 22.7 51.6 58.0
PaCo + BTM + GML 31.3 51.4 56.3

Table 11: Combing GML with our method in the ImageNet-LT dataset.

Methods H-Mean G-Mean L-Recall Accuracy

Original Model
Stage1 1.47 15.22 0.00 29.62
Stage2 28.75 35.30 3.00 40.12

Balanced Training

Model1 23.85 32.92 1.00 38.70
Model2 24.99 33.00 2.00 38.58
Model3 25.17 33.26 1.00 38.69
Model4 25.49 33.14 2.00 38.92
Model5 24.87 32.93 1.00 38.55
Model6 15.31 33.04 1.00 38.89
Model7 24.69 32.64 2.00 38.42
Model8 24.04 32.91 1.00 38.74
Model9 24.54 33.09 1.00 38.84
Model10 25.79 33.30 2.00 38.95

Merge 26.34 34.26 2.00 39.84

Post-train 29.80 35.60 4.00 40.25

Table 12: Results of single �ne-tuned and merged models in Places-LT with MiSLAS.

sion distribution caused by unbalanced datasets. Furthermore, compared to406

using GML alone, combining our method with GML can further improve the407

harmonic mean, and our BTM even achieves a higher geometric mean. This408

is because in the �nal �ne-tuning classi�er stage, since the backbone has al-409

ready been corrected by our BTM algorithm, further use GML to �ne-tuning410

classi�er will result in higher harmonic and geometric mean. This proves that411

our proposed balanced training is indeed very helpful in improving the per-412

formance of the worst categories, and we can further combine our BTM with413

pioneering work to obtain better performances.414

Results of Single Fine-tuned Models and the Merged Models.415

In this section, we report the results of each balanced �ne-tuned, and merged416
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Methods Harmonic Mean Geometric Mean Accuracy

Original Model
Stage1 0.93 21.28 45.51
Stage2 17.68 45.78 52.68

Balanced Training

Model1 2.51 36.53 50.37
Model2 2.70 36.28 50.33
Model3 2.70 36.30 50.23
Model4 2.77 36.24 50.05
Model5 2.63 36.25 50.29
Model6 2.78 36.60 50.48
Model7 2.70 36.38 50.27
Model8 2.76 36.07 50.16
Model9 2.63 35.89 49.98
Model10 2.63 35.98 49.97

Merge 2.81 36.78 50.97

Post-train 21.11 45.85 52.59

Table 13: Results of single �ne-tuned and merged models in ImageNet-LT with MiSLAS.

model during training. For simplicity, we only report the results of MiSLAS417

and PaCo/GPaCo. In particular, MiSLAS is a two-stage decoupling method.418

we directly use the �rst-stage pre-training model and balanced �ne-tune ten419

models based on it. After the balanced training stage, we merge those ten420

models and �ne-tune the classi�er. The results on the Places-LT, ImageNet-421

LT and iNaturalist2018 datasets are in Table 12, Table 13 and Table 14.422

It can be seen that compared with the �rst-stage pre-trained model, each423

model of balanced training has higher harmonic and geometric mean, and424

the merging strategy has further improved the results. After post-training,425

the accuracy of our �nal model produces a more even distribution of accu-426

racy than the original model. We also report the PaCo/GPaCo's detailed427

results of each balanced �ne-tuned and merged model during training. We428

�rst apply the `FC' stage and then balanced train the weights. The results429

on the ImageNet-LT and Places-LT datasets are in Table 15 and Table 16430

respectively. We can still come to similar conclusions.431

Visualization of the Per-Class Accuracy. Since our goal is to im-432

prove the performance of the worst categories, here we visualize the change433

of per-class accuracy after applying our method to MiSLAS in the Places-LT434

dataset, and the result is shown in Figure 3. Our proposed balanced training435

makes the distribution of per-class accuracy more uniform, thus improves the436
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Methods Harmonic Mean Geometric Mean Accuracy

Original Model
Stage1 1.19 39.50 66.87
Stage2 2.03 51.27 71.57

Balanced Training

Model1 1.99 50.22 70.67
Model2 1.90 49.55 70.59
Model3 1.96 49.91 70.56
Model4 1.96 49.87 70.50
Model5 1.97 50.10 70.70
Model6 1.97 49.96 70.58
Model7 1.93 49.69 70.53
Model8 1.93 49.89 70.72
Model9 1.98 50.31 70.91
Model10 1.97 49.97 70.52

Merge 2.02 50.69 70.96

Post-train 2.18 52.02 71.43

Table 14: Results of single �ne-tuned and merged models in iNaturalist2018 with MiSLAS.

worst categories and leads to a higher harmonic mean.437

5. Conclusions, Limitations and Future Work438

In this paper, we presented a straightforward plug-and-play training strat-439

egy to tackle the worst-category problem in long-tailed learning, which has440

been paid more attention by researchers in recent years. By reviving (few-441

shot) balanced undersampling, our BTM training strategy can be easily inte-442

grated with various long-tailed algorithms, requiring minimal training over-443

head and imposing no additional inference burden. Across multiple widely444

used long-tailed datasets, BTM consistently achieves notable and stable im-445

provements in both harmonic and geometric mean accuracy, while maintain-446

ing comparable average accuracy.447

Although our method can signi�cantly improve the accuracy balance448

across categories, we observed that for some large long-tailed datasets such449

as ImageNet and iNaturalist2018, the minimum recall remains zero even with450

the help of BTM. As a result, an intriguing direction for future research is how451

can we further enhance the minimum recall. Additionally, though our BTM452

will substantially increase harmonic and geometric mean, it will slightly de-453

crease arithmetic accuracy in some scenarios. Especially on �many� subsets,454
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Methods H-Mean G-Mean Accuracy

Original Model
Pre-train 21.75 51.29 58.32

FC 2.19 33.82 52.12

Balanced Training

Model1 16.55 47.34 56.03
Model2 11.33 47.17 56.08
Model3 10.20 46.92 55.94
Model4 11.29 46.64 55.54
Model5 10.21 46.69 55.73
Model6 10.01 46.09 55.41
Model7 12.56 46.96 55.80
Model8 9.28 46.79 55.95
Model9 7.87 46.21 55.69
Model10 12.65 47.33 56.02

Merge 11.52 48.46 57.03

Post-train 22.85 51.45 58.15

Table 15: Results of single �ne-tuned and merged models in ImageNet-LT with PaCo.

there is a high probability that the accuracy will decline. Therefore, another455

interesting direction to explore is the simultaneous improvement of average456

accuracy alongside harmonic and geometric mean. Although our method is457

robust to model hyperparameters, how to accurately select the best hyper-458

parameters is still a problem worth exploring. Besides, to further improve459

the persuasiveness of our BTM, it is also an interesting future direction to460

give a reasonable theoretical explanation for the algorithm.461
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Figure 3: Visualization of the change in the distribution of per-class recall (i.e., accuracy).
(a) shows that by performing balanced training on our sampled few-shot datasets and
later merging all models together, we are able to greatly improve the performance of the
model. (b) is the comparison of per-class accuracy between our �nal model and MiSLAS.
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