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Abstract

In recent years, large language models (LLMs) have de-
veloped rapidly and revolutionized natural language pro-
cessing. However, high storage overhead and computing
costs limit LLM deployment in resource-constrained envi-
ronments. Quantization algorithms can effectively compress
LLMs and accelerate inference, but they lead to loss in pre-
cision, especially in low-bit scenarios. In this paper, we find
that the discarded weight values caused by quantization in
fact contain treasures to improve LLMs’ accuracy. To ex-
cavate those hidden treasures, we construct search spaces
around these discarded weights and those weights within the
search space can seamlessly be incorporated into the origi-
nal quantization weights. To determine which weights should
be merged, we design a plug-and-play weight compensa-
tion framework to capture global information and keep the
weights with the highest potential benefits. Our framework
can be combined with various LLM quantization algorithms
to achieve higher precision without additional inference over-
head. We validate the effectiveness of our approach on widely
used benchmark datasets for LLMs.

Introduction
In recent years, pre-trained large language models or
LLMs (Le Scao et al. 2022; Touvron et al. 2023; Zhang
et al. 2022) from the transformer (Vaswani et al. 2017) fam-
ily have achieved exciting results in many complex natural
language processing (NLP) tasks. LLMs have captured wide
attention in both academia and industry. However, the flex-
ibility and scalability of these models still face many lim-
itations. Since LLMs typically have billions of parameters,
they are quite expensive in terms of both computation and
storage costs, which presents a huge challenge for their de-
ployment and application.

Model quantization maps the full-precision (e.g., 32-bit
floating point) weights W and activation values A to lower
precision (e.g., 8-bit integer) weights Wq and activations
Aq . It effectively reduces parameter counts and speeds up
model inference without significantly affecting accuracy.
Therefore, quantization algorithms have been widely used
to deploy LLMs. Generally speaking, there are two kinds of
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typical quantization methods, i.e., post-training quantization
(PTQ) and quantization-aware training (QAT). PTQ algo-
rithms quantify the model’s weights and activation directly.
In contrast, QAT algorithms make quantization part of the
model training process. In general, researchers will first per-
form PTQ algorithms for LLMs, and then further run QAT
algorithms based on PTQ models if enough computational
resources are available.

Although existing quantization methods for LLMs have
demonstrated great capacity, they also have some inherent
limitations. While QAT algorithms can significantly reduce
accuracy degradation caused by quantization and sometimes
even close to lossless, they need to retrain LLMs and require
large computational resources. In contrast, PTQ algorithms
are faster and more widely used. However, they often lead
to a noticeable decrease in model precision. Besides, previ-
ous LLM PTQ methods (Frantar et al. 2022; Lin et al. 2024)
mainly focus on adjusting weight or outlier activation layer-
by-layer, and only consider the activation values of an indi-
vidual layer or block. Hence, they ignore global information
and may result in the accumulation of quantization errors.
Both PTQ and QAT can often achieve INT8 lossless quan-
tization for LLMs (Frantar et al. 2022; Liu et al. 2024), but
further reducing to lower bits (such as INT4 and INT2) will
most likely result in significant accuracy loss.

To overcome these defects of existing LLM PTQ and QAT
algorithms, we propose a plug-and-play framework to im-
prove the precision of low-bit quantization LLMs. We be-
lieve that for LLM PTQ algorithms, the discarded weights
(i.e., D = W −Wq) still contain precious information that
has not been fully mined. Therefore, we propose a novel
strategy to excavate the hidden treasures in the discarded
weights D. In particular, based on low-rank decomposition
technique, we design various small search spaces around D.
The search spaces contain multiple weights that are divisi-
ble by the quantization scales and can be incorporated into
the original quantization weights seamlessly. Therefore, our
framework does not add an extra inference burden. To deter-
mine which weights should be merged, we apply the global
perplexity (PPL) value on the calibration set as a criterion
rather than the activation change of an individual layer.

Our framework does not rely on back-propagation but
can still capture global information, so only a small num-
ber of samples and hyperparameters are required and quan-



tization models will not overfit the calibration set. Later
we will show that our framework is robust to hyperparam-
eters and can consistently improve model accuracy with
various search spaces. Our framework, namely Discarded
Weight Recycling (DWR), can be combined with various
existing LLM PTQ and QAT algorithms. That is, running
DWR framework after LLM PTQ algorithms can further im-
prove the precision of the quantization LLMs. Furthermore,
if there are sufficient computational resources to perform
QAT algorithms, then fine-tuning DWR quantization models
is also better than directly fine-tuning PTQ LLMs. This in-
dicates that DWR framework can be inserted between PTQ
and QAT algorithms, thus to improve LLM quantization. We
list our contributions as follows:

• To solve the problem of precision degradation caused by
existing LLM low-bit quantization algorithms, we pro-
pose a unified plug-and-play framework to recycle the
treasures in those discarded weight values.

• By carefully designing the search space and evaluation
metric, our practical and efficient DWR framework effec-
tively utilizes the global information, optimizes the quan-
tization pipeline, and reduces the accuracy loss without
any extra inference burden.

• A large number of experiments have verified the effec-
tiveness of our method. In three typical LLM families,
our framework can be combined with various PTQ and
QAT algorithms and improve the accuracies of low-bit
quantization models, which demonstrates DWR’s broad
applicability and effectiveness in different scenarios.

Related Work
Our work is connected to several themes in the literature,
which we briefly review next.

Large Language Models (LLMs)
Large language models (Brown et al. 2020; Le Scao et al.
2022; Touvron et al. 2023; Zhang et al. 2022) are designed
to understand and generate human languages. In recent years
LLMs have developed rapidly and consistently show excel-
lent performances across various NLP tasks. These break-
throughs can be attributed to their enormous scale in model
size and amount of training data, as they train on massive
amounts of data from different sources while containing bil-
lions or even trillions of parameters. Many LLMs have been
proposed in recent years, and we will show that our frame-
work can easily handle those models at various scales.

Post-Training Quantization (PTQ) for LLMs
PTQ algorithms quantify the parameters of LLM after the
training stage, which can simply and efficiently improve
the efficiency of LLM without major modifications or ex-
tensive training efforts. However, existing PTQ algorithms
may introduce a certain degree of precision loss. Some LLM
PTQ methods focus on quantifying weights. For example,
GPT3.int8() (Dettmers et al. 2022) isolates the outlier fea-
ture dimensions into a 16-bit matrix multiplication and still
multiplies most values in 8-bit. GPTQ (Frantar et al. 2022)

proposes a novel group-wise quantization technique based
on approximate second-order information. AWQ (Lin et al.
2024) employs an activation-aware approach by consider-
ing the significance of weight channels corresponding to
larger activation magnitudes. SpQR (Dettmers et al. 2024b)
identifies and separates abnormal weights, stores them with
higher precision and compresses all other weights to 3–4
bits. Some PTQ works quantify both LLM’s weight and acti-
vation. SmoothQuant (Xiao et al. 2023) smooths the activa-
tion outliers by offline migrating the quantization difficulty
from activations to weights. OmniQuant (Shao et al. 2023)
optimizes the clipping threshold to modulate the extreme
values and also shifts the challenge of quantization from ac-
tivations to weights. LoWC (Yao et al. 2024) applies Sin-
gular Value Decomposition or SVD (Golub and Van Loan
2013) to low-rank decompose error weight, which is similar
to our idea, but it introduces additional parameters that will
slow down model inference. In contrast, applying our DWR
framework after finishing PTQ can dramatically improve ac-
curacy without any additional inference burden.

Quantization-Aware Training (QAT) for LLMs
QAT algorithms enable an LLM to adapt to lower-precision
fixed-point representations during training. This adaptation
is designed to ensure that the fine-tuned LLM sustains its
performance even after quantization to lower bit-widths.
LLM-QAT (Liu et al. 2024) leverages generations pro-
duced by a pre-trained model to achieve data-free distilla-
tion, and it quantizes not only weights and activations but
also key-value (KV) caches. Some QAT works only fine-
tune part of the weight parameters. PEQA (Kim et al. 2024)
first quantizes fully-connected (FC) layers and then fine-
tunes the quantization scalar for each specific downstream
task. QLoRA (Dettmers et al. 2024a) back-propagates gradi-
ents through a frozen 4-bit quantized pre-trained LLM into
LoRA low-rank adapters (Hu et al. 2021). QA-LoRA (Xu
et al. 2024) integrates LLM and adapters into a quantized
model without accuracy loss. Generally speaking, QAT will
usually be conducted after performing PTQ algorithms for
LLMs. Later we will show that performing QAT after apply-
ing DWR is more effective than performing QAT directly.

Methods
Now we describe our framework. In this work, we study
one of the most common quantization scenarios, i.e., weight
quantization with uniform bits. We first introduce the pre-
liminaries. Based on the discarded weights, we provide three
potential search space generation methods. Then we present
the DWR framework.

Preliminaries
A quantization algorithm maps a floating-point number into
lower-bit integers. Suppose we have a fully-connected (FC)
layer y = Wx+b, whose input x ∈ Rn×c, output y ∈ Rm×c

and weight W ∈ Rm×n. Quantization algorithms transfer
the floating-point weight W into N -bit integer weight Wq

with a scaling factor α and a zero-point value β. Then, the



full-precision pseudo-quantized weight Ŵq are

Ŵq = α(Wq − β). (1)

Please note that for convenience we have omitted how to
quantize W to integer weight Wq , as different LLM quan-
tization algorithms have different strategies. We can also
transfer Ŵq into Wq , as

Wq = clip(⌊Ŵq

α
⌉+ β, 0, 2N − 1), (2)

where clip is the truncation operation and ⌊·⌉ represents
rounding to the nearest integer between 0 and 2N−1. There-
fore, information has been lost between using Ŵq and W ,
as D = W − Ŵq—an important reason for the accuracy
loss after quantization is with the discarded weight D! So
long as D is added to Ŵq , we can directly get the origi-
nal weight W , and an LLM’s accuracy is kept. But, Ŵq is
a pseudo-quantization weight, and directly compensating D

to Ŵq will destroy the quantization structure. Therefore, to
improve the efficiency of the quantization model, we need a
suitable way to integrate D and Ŵq .

To incorporate the discarded weight D into Ŵq without
breaking the original quantization structure, one potential
solution is to add Ŵq and D and then divide the scale di-
rectly, i.e.,

W̃q = clip(⌊Ŵq +D

α
⌉+ β, 0, 2N − 1), (3)

where W̃q is the pseudo-quantization weight after compen-
sation. But, this operation (proposed in the round-to-nearest
or RTN method) usually performs worse than state-of-the-
art quantization algorithms (Gupta et al. 2015). Considering
this observation, we believe that there may be several rea-
sons why directly merging D is at best sub-optimal, e.g.,

• It is doubtful whether directly adding the discarded
weight D will bring benefits in each FC layer, and there
lacks a viable criterion to evaluate it.

• This operation specifies the variable to be merge with Ŵq

can only be D, which excludes all other potential can-
didates. This limits the possibility of improving LLM’s
accuracy.

To address these issues, we propose our DWR framework.

Generate the Search Space
To relieve the problem that there is only one candidate to
merge weight, we design search spaces around the discarded
weight D. Because of non-linear calculation (i.e., the clip
operation) in quantization, D most likely is not the opti-
mal solution. Instead, we propose to generate a search space
around D, and search for the optimal merge weight. Specif-
ically, we propose three feasible strategies.

Random Generation The first strategy is random gen-
eration. We randomly generate an orthogonal matrix R ∈
Rm×m, and decompose it as R = USV ⊤, where U ∈

Rm×m is an orthonormal matrix, and S ∈ Rm×m is a di-
agonal matrix containing singular values in the decreasing
order. Suppose we only use the largest k singular values. The
resulting matrix Rk is an optimal approximation of R with
a lower rank k, i.e., Rk = UkSkV

⊤
k , where Uk, Vk ∈ Rm×k

contains the first k columns of U and V , and Sk is a diag-
onal matrix formed by the corresponding k singular values.
Then we construct the search space by

W̃q = clip(⌊Ŵq +RkD

α
⌉+ β, 0, 2N − 1). (4)

We can obtain a search space by specifying a set of differ-
ent k values. Here we use orthogonal matrices because we
want to avoid generating overly large values in weights.

SVD Generation A straightforward strategy is directly
performing SVD on D, i.e., D = USV ⊤. Similarly, we
keep the top k singular values of S and get Dk = UkSkV

⊤
k ,

where Uk ∈ Rm×k and Vk ∈ Rn×k are the top-k columns
of U and V , respectively. Therefore, we have

W̃q = clip(⌊Ŵq +Dk

α
⌉+ β, 0, 2N − 1). (5)

By pre-specifying a set of different k values for searching,
we obtain a feasible search space. Note that the symbols U ,
S, V are defined differently in random generation, SVD gen-
eration and the AFM generation in the next sub-section.

AFM Generation AFM is a better alternative to SVD
when compressing FC layers (Yu and Wu 2023). The idea
is to use PCA to low-rank compress FC layers, but AFM
imitates the model outputs rather than the weight. In partic-
ular, assume ŷq = Ŵqx + b and ∆y = y − ŷq = Dx, then
AFM performs PCA on ∆y. First, we compute the covari-
ance matrix of ∆y, i.e.,

Cov(∆y) = E
[
∆y∆y⊤

]
− E[∆y]E[∆y]⊤ , (6)

where E[·] is the expectation operator. Since Cov(∆y) is
positive semi-definite, its SVD is Cov(∆y) = USU⊤. We
extract the first k columns of U ∈ Rm×m into Uk ∈ Rm×k.
Knowledge on PCA tells us

∆y − E[∆y] ≈ UkU
⊤
k (∆y − E[∆y]) . (7)

This approximation is proved optimal (Wu 2020). Then, ∆y
can be transformed into

∆y ≈ UkU
⊤
k Dx+ E[∆y]− UkU

⊤
k E[∆y]. (8)

Therefore, we can imitate y as

y = Ŵqx+ b+∆y

≈ (Ŵq + UkU
⊤
k D)x+ b+ E[∆y]− UkU

⊤
k E[∆y].

(9)

Then, we can get

W̃q = clip(⌊Ŵq + UkU
⊤
k D

α
⌉+ β, 0, 2N − 1),

b̃ = b+ E[∆y]− UkU
⊤
k E[∆y].

(10)

This also means that we update both W̃q and b̃ during the
search process. Because collecting ∆y during inference is



Algorithm 1: The DWR Framework

Input: The original large language model M and its low-bit
PTQ model Mq with scales and zero points. The calibra-
tion dataset C.

Output: The quantization model after compensation.
1: Calculate Mq’s perplexity po on C.
2: for each layer in Mq do
3: Set pn (the current best perplexity) as p0, and kn (the

current best k value) as zero.
4: Calculate discarded weights D for each FC in this

transformer layer.
5: Pre-design a set of search space dimensions.
6: for dimension k in the search space do
7: Uniformly update all FC layers in the model layer

by Equation 4, or 5, or 10 using this k value.
8: Calculate Mq’s perplexity p with the updated FC

layers in the calibration dataset C.
9: if p < pn then

10: Update pn with p and kn with k.
11: end if
12: end for
13: if pn < po then
14: Based on dimension kn and Equation 4, or 5, or 10,

update Mq’s layer.
15: Set po as pn.
16: end if
17: end for

a memory-greedy process, in practice we adaptively update
E[∆y∆y⊤] and E[∆y] in a streaming fashion.

It is worth noting that we proposed 3 strategies to con-
struct the search space by low-rank technology, because low-
rank decomposition is easy to implement and can quickly
get an approximation of D without breaking model output.
There may exist other generation algorithms, too.

But, as we will show later, what helps quantization is our
idea to search in a search space, plus our DWR framework,
rather than any specific search space—even when the ran-
dom search space is used, DWR can achieve higher accuracy
than the original LLM quantization algorithm.

Discarded Weight Recycling
Now we propose our Discarded Weight Recycling (DWR)
framework after obtaining a search space. We first perform
the PTQ algorithm, and then run our DWR framework. In
particular, previous LLM PTQ algorithms will first sample
a small calibration set to help correct the model’s output.
Here we continue to use the same calibration set to run our
framework and show DWR in Algorithm 1.

As the algorithm shows, our framework first calculates the
original quantization model’s perplexity. Then, according to
the pre-designed search space, we update all FC weights in
a layer of LLM and calculate the updated model’s perplexity
on the calibration set. In the end, we find the best-performing
weights in the search space and compare the updated model
and the original quantization model. If the updated model
has a lower perplexity, we accept the updated FC layers.

Otherwise, we use the original FC weights. We layer-by-
layer recycle the discarded weights and this process is re-
peated until the last model layer. For simplicity, when apply-
ing the random generation strategy, we will fix the R matrix
at the corresponding location in each LLM layer. For exam-
ple, the QKV FC layers in different LLM attention blocks
will share the same R matrix, as will in other FC layers.
When using AFM generation, we will first update the previ-
ous layer, and then calculate Cov(∆y) for each FC weights
in the next layer. Note that when calculating Cov(∆y), the
input x is not the same between the compensated quantiza-
tion model and the original model. Our purpose here is just
to generate the weight search space, so we ignore this differ-
ence and use the original model’s input x.

Therefore, our DWR framework can easily integrate with
various search space generation methods, as long as they
provide suitable potential updates. It indicates that our ap-
proach is not dependent on a specific search space and thus
has great flexibility. Our DWR framework does not rely on
any quantization algorithms. We will show that all three
strategies can achieve better performances than the original
quantization model. We use the quantization model’s per-
plexity as a criterion. This strategy introduces global infor-
mation and solves the problem of deciding whether to ac-
cept discarded weight, which is the most important factor
in improving LLM’s accuracy. If there are enough comput-
ing resources, one can further conduct QAT algorithms after
DWR, which is better than directly fine-tuning PTQ model.

Experiments
We now evaluate our methods in this section. We first intro-
duce experiment settings and then present main experimen-
tal results. We end this section with several analyses. All
experiments are conducted with PyTorch.

Settings
Foundation models. We evaluate our framework on the 7B1
model of BLOOM (Le Scao et al. 2022), and the 7B, 13B
and 70B models of LLaMA2 (Touvron et al. 2023), and
LLaMA3-8B (Dubey et al. 2024).

Quantization. For PTQ methods, we adopt GPTQ (Fran-
tar et al. 2022) with INT4 & 3 weight quantization in
BLOOM, LLaMA2 and LLaMA3 families. Since GPTQ
cannot handle weight-only INT2 quantization, we also per-
form OmniQuant (Shao et al. 2023) with INT2 weight-
only quantization in LLaMA2 families. Our approach is also
compatible with other PTQ methods such as AWQ (Lin
et al. 2024) and SPQR (Dettmers et al. 2024b). We conduct
a group-wise asymmetric quantization (with a group size
of 128) in the PTQ experiments. In particular, GPTQ and
OmniQuant take 128 samples from the C4 and WikiText2
datasets as calibration sets respectively, and each sample is
2048 tokens long. We use the same calibration set when
performing DWR after these PTQ algorithms. The default
search space method we apply is AFM generation. Note
that the linear layer in LLaMA2 does not contain bias, so
we do not update bias when applying AFM generation. In
practice, we will skip compensating the first 1/6 block be-
cause the error accumulation in those blocks is so small that



Method Bits W2 (↓) C4 (↓) BoolQ PIQA SIQA HLSW WG ARC-e ARC-c OBQA Avg.
BLOOM-7B1 16 11.37 14.12 62.78 73.50 33.37 62.32 64.40 57.37 33.45 36.00 52.90
GPTQ 4 11.49 14.23 62.72 73.45 33.27 61.18 63.22 55.60 33.31 35.80 52.32

+DWR 4 11.44 14.17 63.15 73.61 33.27 62.12 64.48 57.37 33.45 36.20 52.96
GPTQ 3 11.97 14.70 62.72 71.60 33.06 59.96 61.25 54.59 32.42 34.20 51.23

+DWR 3 11.72 14.47 63.27 72.85 33.37 60.57 62.83 56.69 32.68 33.60 51.98
LLaMA2-7B 16 5.47 6.98 77.77 79.05 32.91 76.00 69.22 74.58 46.25 44.20 62.50
GPTQ 4 5.70 7.24 76.73 78.51 32.91 75.47 68.27 73.36 44.54 42.20 61.50

+DWR 4 5.49 6.98 77.28 78.94 32.91 75.85 68.82 74.66 45.90 43.80 62.27
GPTQ 3 6.42 7.94 72.84 76.66 33.27 71.89 68.19 68.69 40.78 40.60 59.12

+DWR 3 5.52 7.01 76.82 78.84 32.91 75.59 69.14 74.45 45.90 44.00 62.21
OmniQuant 2 11.23 15.45 60.15 66.65 32.19 51.93 56.51 45.54 27.22 30.60 46.35

+DWR 2 10.41 15.19 61.99 66.97 32.91 51.07 56.35 46.80 29.01 31.40 47.06
LLaMA2-13B 16 4.88 6.47 80.61 80.52 33.11 79.38 72.30 77.40 49.06 45.20 64.70
GPTQ 4 4.99 6.57 78.72 80.41 33.42 79.03 71.98 76.68 49.06 44.40 64.21

+DWR 4 4.90 6.47 80.61 80.47 33.11 79.31 72.38 77.48 49.40 45.20 64.75
GPTQ 3 5.45 7.05 77.89 79.00 32.91 76.78 70.79 74.45 44.62 42.00 62.31

+DWR 3 4.97 6.53 80.73 80.63 33.01 79.24 72.77 77.65 49.32 45.40 64.84
OmniQuant 2 8.33 11.15 64.89 70.67 32.70 59.15 57.85 56.99 33.70 35.00 51.37

+DWR 2 7.78 11.06 65.90 70.18 32.60 59.36 57.77 56.52 33.87 35.60 51.48
LLaMA2-70B 16 3.32 5.52 83.70 82.75 33.11 83.81 77.98 80.98 57.34 48.80 68.56
GPTQ 4 3.42 5.59 83.03 82.48 32.91 83.47 77.27 80.56 57.08 48.20 68.13

+DWR 4 3.38 5.53 83.46 82.64 33.04 83.56 77.81 80.84 57.33 48.60 68.41
GPTQ 3 3.88 5.88 82.20 81.99 33.01 82.14 76.87 79.34 55.55 48.80 67.49

+DWR 3 3.40 5.58 82.87 81.99 33.06 82.42 77.58 79.63 55.97 49.20 67.85
OmniQuant 2 6.54 8.53 71.16 75.30 32.96 70.80 69.46 68.18 41.38 38.00 58.40

+DWR 2 6.27 8.42 71.50 75.63 32.96 70.85 68.90 68.56 41.72 38.80 58.62
LLaMA3-8B 16 6.24 8.96 82.17 81.18 32.91 78.93 73.95 81.14 53.50 45.00 66.10
GPTQ 4 9.96 11.76 77.46 73.29 32.50 74.83 72.93 64.06 38.48 45.60 59.89

+DWR 4 6.26 8.97 81.83 81.34 32.91 78.86 74.35 81.36 52.99 44.20 65.98
GPTQ 3 67.06 44.64 64.59 71.33 33.06 63.25 66.69 66.12 40.70 39.20 55.62

+DWR 3 6.34 9.05 82.08 81.12 32.91 78.61 73.80 80.72 52.13 46.60 66.00

Table 1: Results in WikiText2, C4 and zero-shot commonsense QA datasets with PTQ algorithms.

compensating them does not affect the results. For the se-
lection range of dimension k, we set the search interval to
512 on the 7B models, 1024 on the 13B and 30B models,
and 2048 on the 70B model. For example, the hidden sizes
of BLOOM-7B1 are 4096, and we set the candidate values
of k are {512, 1024, · · · , 4096}. A large search dimension
interval helps to improve the speed of the algorithm.

For QAT methods, we follow the settings of QA-
LoRA (Xu et al. 2024) and fine-tune LLaMA2-7B & 13B
models with INT4 & 3 quantization. That is, based on the
GPTQ INT4 & 3 quantization models, we will directly fine-
tune models or first perform DWR and then fine-tune them.
All training hyperparameters are the same as the original
QA-LoRA paper, and we randomly sample 23k data from
Flanv2 (Longpre et al. 2023) dataset to fine-tune the quanti-
zation models.

Evaluation metrics. Following the settings of GPTQ
and OmniQuant, we evaluate the perplexity on the Wiki-
Text2 (Stephen et al. 2017) and C4 (Raffel et al.
2020) datasets. We further assess the zero-shot common
sense question answering (QA) ability on tasks covering
SIQA (Sap et al. 2019), HellaSwag (Zellers et al. 2019),
PIQA (Bisk et al. 2020), WinoGrande (Sakaguchi et al.
2021), ARC (Clark et al. 2018), BoolQ (Clark et al. 2019),
and OpenBookQA (Mihaylov et al. 2018). We also evaluate

both the zero-shot and five-shot performance of the LLMs
on massively multitask language understanding (MMLU)
benchmark (Hendrycks et al. 2021). It consists of 57 lan-
guage tasks including humanities, STEM, social science,
etc. Note that we do not report the accuracy of BLOOM se-
ries models on MMLU datasets, because even the accuracy
of baseline models is close to random guesses. Therefore,
those models’ results on MMLU datasets provide meaning-
less references. We adopt lm-eval-harness (Gao et al. 2021)
to produce the accuracy results.

Main Results

PTQ Results. We first apply DWR after performing GPTQ
and OmniQuant. Table 1 summarizes the results of differ-
ent models, bit widths in WikiText2, C4 and eight common
sense reasoning datasets. The results of MMLU datasets are
shown in Table 2. Each block is based on the same founda-
tion model specified in the first row. Note that we abbrevi-
ate WikiText2, HellaSwag, WinoGrande, and OpenBookQA
to W2, HLSW, WG, and OBQA, respectively. ARC-e and
ARC-c stand for ARC-easy and ARC-challenge tasks. As
the results show, our DWR-optimized models will not over-
fit the calibration dataset and consistently outperform the
original PTQ models. The advantage is even more signifi-
cant when the model size is smaller (e.g., 7B and 13B) or



Method Bits MMLU (0-shot) MMLU (5-shot)
Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

LLaMA2-7B 16 39.64 34.25 47.35 47.18 41.79 43.32 36.98 51.77 52.69 45.82
GPTQ 4 36.77 35.49 44.95 44.38 40.40 42.85 32.23 52.14 50.18 45.25

+DWR 4 39.38 34.22 46.64 46.77 41.45 43.00 36.76 51.25 52.59 45.53
GPTQ 3 34.26 31.02 39.32 41.17 36.44 38.96 35.05 43.84 47.28 40.99

+DWR 3 39.30 34.63 47.09 46.86 41.63 43.00 37.65 51.19 52.20 45.63
OmniQuant 2 25.23 22.52 25.38 25.59 24.73 24.17 28.39 31.39 25.72 27.04

+DWR 2 26.31 24.45 23.40 23.95 24.74 24.44 28.20 30.42 26.13 26.97
LLaMA2-13B 16 47.99 42.21 61.23 59.41 52.12 53.43 43.83 63.21 61.35 55.17
GPTQ 4 46.63 42.25 59.70 58.71 51.18 50.48 43.77 62.37 61.96 54.12

+DWR 4 48.16 42.66 61.23 59.29 52.25 53.41 44.21 62.98 61.18 55.16
GPTQ 3 43.95 38.98 54.47 53.07 47.16 47.82 42.12 58.27 56.58 50.77

+DWR 3 46.55 41.83 58.82 56.32 50.34 51.46 43.93 60.77 59.58 53.60
OmniQuant 2 25.14 22.84 23.30 25.43 24.28 26.72 28.54 30.22 32.02 29.07

+DWR 2 25.72 24.39 24.18 26.68 25.30 26.89 29.94 29.96 32.64 29.52
LLaMA2-70B 16 60.70 53.66 77.67 72.45 65.44 64.53 57.66 79.46 74.93 68.56
GPTQ 4 59.57 53.19 76.37 71.26 64.41 64.21 57.47 79.16 74.67 68.24

+DWR 4 59.49 53.47 76.47 71.52 64.52 64.36 57.56 79.49 74.99 68.50
GPTQ 3 58.11 53.12 73.77 68.68 62.76 61.40 54.71 78.84 73.38 66.37

+DWR 3 58.81 51.70 74.16 70.49 63.16 61.45 55.34 78.19 73.25 66.36
OmniQuant 2 35.24 32.00 39.84 38.91 36.33 40.19 36.73 49.11 48.31 43.16

+DWR 2 35.11 33.75 42.25 41.10 37.69 40.87 36.54 50.18 48.95 43.73
LLaMA3-8B 16 57.34 55.06 74.07 70.42 63.39 59.94 55.82 76.31 72.16 65.30
GPTQ 4 55.41 53.28 72.31 68.59 61.55 58.41 54.30 74.52 70.52 63.69

+DWR 4 57.05 55.03 74.00 70.74 63.34 59.60 55.95 75.95 71.71 65.04
GPTQ 3 49.37 45.86 63.37 60.89 54.20 51.69 47.19 65.13 61.86 55.88

+DWR 3 56.24 53.76 72.73 69.55 62.24 60.30 55.28 76.18 71.71 65.18

Table 2: Accuracy in MMLU datasets with PTQ algorithms.

Method Bits W2 (↓) C4 (↓) BoolQ PIQA SIQA HLSW WG ARC-e ARC-c OBQA Avg.
LLaMA2-7B 16 5.47 6.98 77.77 79.05 32.91 76.00 69.22 74.58 46.25 44.20 62.50
QA-LoRA 4 5.54 7.12 77.74 78.99 32.80 75.63 68.76 74.16 45.22 44.20 62.19

+DWR 4 5.52 7.05 78.41 79.02 32.96 75.94 69.10 74.37 45.30 45.00 62.51
QA-LoRA 3 5.68 7.19 74.40 77.65 31.99 74.59 68.42 72.60 44.11 42.20 60.75

+DWR 3 5.64 7.12 74.98 77.63 31.93 74.98 68.93 72.90 44.28 42.80 61.05
LLaMA2-13B 16 4.88 6.47 80.61 80.52 33.11 79.38 72.30 77.40 49.06 45.20 64.70
QA-LoRA 4 4.95 6.51 79.24 80.22 33.52 78.99 72.10 76.98 49.15 45.00 64.40

+DWR 4 4.93 6.49 80.31 80.48 33.62 79.21 72.04 77.15 49.32 45.40 69.69
QA-LoRA 3 5.17 5.72 78.32 79.36 32.96 77.88 71.02 75.67 47.27 44.20 63.34

+DWR 3 5.04 5.69 78.75 79.56 33.06 77.91 71.48 75.59 47.53 44.80 63.59

Table 3: Results in WikiText2, C4 and zero-shot commonsense QA datasets with QA-LoRA.

Method Bits MMLU (0-shot) MMLU (5-shot)
Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

LLaMA2-7B 16 39.64 34.25 47.35 47.18 41.79 43.32 36.98 51.77 52.69 45.82
QA-LoRA 4 42.23 36.23 48.31 49.22 43.60 42.19 37.34 48.37 49.25 43.80

+DWR 4 43.77 38.56 50.16 50.08 45.64 43.71 39.23 50.13 50.11 46.95
QA-LoRA 3 38.71 34.92 45.68 45.76 40.66 38.78 35.85 46.26 45.76 40.97

+DWR 3 40.23 37.02 47.76 48.23 42.57 40.19 37.83 47.85 48.28 42.73
LLaMA2-13B 16 47.99 42.21 61.23 59.41 52.12 53.43 43.84 63.21 61.35 55.17
QA-LoRA 4 47.92 43.43 61.55 59.36 51.82 51.02 43.83 62.71 60.83 53.75

+DWR 4 48.35 43.75 62.07 59.42 52.17 51.64 43.78 62.97 61.14 54.12
QA-LoRA 3 46.89 41.97 59.21 58.25 50.45 49.87 42.32 60.45 59.72 52.34

+DWR 3 47.29 42.29 60.05 58.31 50.85 50.41 42.55 61.58 59.97 52.87

Table 4: Accuracy in MMLU datasets with QA-LoRA.

the bit width is lower (e.g., INT3 or even INT2). This phe-
nomenon indicates that DWR is a powerful solution in sce-

narios where computational efficiency is required. In some
cases, the compensated model’s INT4 accuracy is even bet-



Method INT4 INT3
W2 C4 ACC. W2 C4 ACC.

GPTQ 11.49 14.23 52.32 11.97 14.70 51.23
Random 11.47 14.21 52.49 11.75 11.46 51.71
SVD 11.42 14.16 52.65 11.45 14.21 52.60
AFM 11.44 14.17 52.96 11.72 14.47 51.98

Table 5: Results in WikiText2, C4 and common sense QA
datasets with different search space generation methods.

Method INT4 INT3
W2 C4 ACC. W2 C4 ACC.

GPTQ 11.49 14.23 52.32 11.97 14.70 51.23
RTN 11.58 14.31 52.35 12.53 15.21 51.23
KL 11.55 14.31 52.41 12.25 15.10 51.54
PPL 11.44 14.17 52.96 11.72 14.47 51.98

Table 6: Results in WikiText2, C4 and common sense QA
datasets with different evaluation criteria.

ter than the 16-bit original model. In particular, we find that
GPTQ could not deal with LLaMA3 well, and there was a
large accuracy loss with INT4/3 quantization. In contrast,
our method can obtain a quantized model with higher accu-
racy on the basis of GPTQ. These results reveal the effec-
tiveness of our algorithm.

QAT Results. We apply QA-LoRA to fine-tune GPTQ
and our compensated INT4 & 3 quantized LLaMA2-7B &
13B models, respectively. The results of WikiText2, C4 and
eight common sense question answering datasets are shown
in Table 3. The accuracies of MMLU datasets are shown
in Table 4. We can obtain similar conclusions from these
experiments. Those results indicate that our DWR does not
rely on any exact quantization algorithms, and can change
the traditional quantization paradigm, i.e., first PTQ and then
QAT. DWR can be used as a plug-and-play framework and
is important in boosting low-bit quantization LLMs.

Ablation Studies
We perform several analyses in this section to explore the
impact of different modules of our method.

Effect of search spaces. Our default search space method
is AFM generation. Here we study the effect of differ-
ent search spaces. We apply INT4 & 3 BLOOM-7B1 with
GPTQ quantization as baselines, and other settings remain
consistent. The results in Table 5 show that even the ran-
domly generated search space can achieve better results than
the original quantized model, which suggests that our whole
proposed framework is the reason for its effectiveness, rather
than a specific search space generation algorithm.

Effect of evaluation criterion. DWR applies LLM’s per-
plexity as the evaluation criterion. Now we compare it with
other strategies, i.e., direct merging without any criterion
(namely RTN quantization), and the KL value between the
output of the quantization model and the original model. We
use BLOOM-7B1 model with INT4 & 3 quantization. The
results are shown in Table 6, and directly using perplexity
achieves the highest precision.

Effect of hyperparameters. In the original settings of

#Data #Block #Interval W2 C4 ACC.
Baseline 11.49 14.23 52.32

8 5 512 11.45 14.20 52.67
128 5 512 11.44 14.17 52.96
256 5 512 11.40 14.15 52.69
128 0 512 11.42 14.18 52.60
128 10 512 11.43 14.17 52.69
128 5 256 11.42 14.16 52.78
128 5 1024 11.42 14.16 52.77

Table 7: Results in WikiText2, C4 and common sense QA
datasets with different hyperparameters.

Model LLaMA2-7B LLaMA2-13B LLaMA2-70B
Time 1.12 2.67 6.21

Table 8: The running time (hours) of our DWR algorithm
with LLaMA2 families.

BLOOM-7B1 with INT4 quantization, we calculate perplex-
ity by 128 samples, skip the first 1/6 blocks, and set the
searching interval to 512. Here we study the influence of
these hyperparameters. The results shown in Table 7 indicate
that with various hyperparameters, DWR can achieve higher
precision than the original quantization model. Therefore,
DWR framework is robust for hyperparameters.

The running time of DWR. Here we report the time re-
quired to run our DWR algorithm. We take the INT4 quan-
tized LLaMA2 models as examples. In particular, we run
LLaMA2-7B & 13B on 8 Tesla V100 GPUs and LLaMA2-
70B on 4 80G A100 GPUs. The results are shown in Ta-
ble 8. It can be seen that the runtime of our DWR algorithm
is acceptable. It is worth noting that our DWR can perform
search operations in parallel on multiple GPUs at the same
time, and then we uniformly judge the optimal solution and
update one layer after the search process. Therefore, we can
use multiple GPUs simultaneously to achieve fast speed and
avoid abundant communication overhead, which is not done
by the previous LLM PTQ and QAT algorithms.

Conclusion, Limitation, and Future Work
In this paper, we proposed a plug-and-play framework to
recycle the treasures in discarded weights caused by LLM
quantization. With various search spaces, we designed a
discarded weights recycling framework, named DWR. Our
DWR consistently achieves notable and stable improve-
ments on various LLM evaluation datasets. Besides, DWR
is insensitive to hyperparameters, achieves notable and sta-
ble improvements on various LLM evaluation datasets, and
can be easily combined with various LLM PTQ and QAT
algorithms without bringing additional inference burden.

Although DWR can significantly improve quantization
LLM’s precision, we currently only consider weight-only
quantization scenarios. Therefore, an interesting direction is
how to extend DWR to activation quantization, which we
leave for future work. In addition, we will also extend our al-
gorithm to more models and tasks, such as multimodal large
models and LLMs with MoE architecture. We propose these
as areas for future exploration.
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